文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

奥密克戎XBB.1变体及其后代:基因组突变、快速传播和显著特征。

The Omicron XBB.1 Variant and Its Descendants: Genomic Mutations, Rapid Dissemination and Notable Characteristics.

作者信息

Giancotti Raffaele, Lomoio Ugo, Puccio Barbara, Tradigo Giuseppe, Vizza Patrizia, Torti Carlo, Veltri Pierangelo, Guzzi Pietro Hiram

机构信息

Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.

SMARTEST Lab., eCampus University, 22060 Novedrate, Italy.

出版信息

Biology (Basel). 2024 Feb 1;13(2):90. doi: 10.3390/biology13020090.


DOI:10.3390/biology13020090
PMID:38392308
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10886209/
Abstract

The SARS-CoV-2 virus, which is a major threat to human health, has undergone many mutations during the replication process due to errors in the replication steps and modifications in the structure of viral proteins. The XBB variant was identified for the first time in Singapore in the fall of 2022. It was then detected in other countries, including the United States, Canada, and the United Kingdom. We study the impact of sequence changes on spike protein structure on the subvariants of XBB, with particular attention to the velocity of variant diffusion and virus activity with respect to its diffusion. We examine the structural and functional distinctions of the variants in three different conformations: (i) spike glycoprotein in complex with ACE2 (1-up state), (ii) spike glycoprotein (closed-1 state), and (iii) S protein (open-1 state). We also estimate the affinity binding between the spike protein and ACE2. The market binding affinity observed in specific variants raises questions about the efficacy of current vaccines in preparing the immune system for virus variant recognition. This work may be useful in devising strategies to manage the ongoing COVID-19 pandemic. To stay ahead of the virus evolution, further research and surveillance should be carried out to adjust public health measures accordingly.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒是对人类健康的重大威胁,在复制过程中,由于复制步骤中的错误和病毒蛋白结构的改变,该病毒发生了许多突变。XBB变异株于2022年秋季在新加坡首次被发现。随后在包括美国、加拿大和英国在内的其他国家也检测到了该变异株。我们研究了XBB亚变体刺突蛋白结构上的序列变化的影响,特别关注变异株扩散速度及其扩散时的病毒活性。我们研究了三种不同构象下变异株的结构和功能差异:(i)与血管紧张素转换酶2(ACE2)结合的刺突糖蛋白(1向上状态),(ii)刺突糖蛋白(封闭-1状态),以及(iii)S蛋白(开放-1状态)。我们还估计了刺突蛋白与ACE2之间的亲和力结合。在特定变异株中观察到的市场结合亲和力引发了关于当前疫苗在使免疫系统识别病毒变异株方面功效的问题。这项工作可能有助于制定应对当前新冠疫情的策略。为了领先于病毒进化,应开展进一步的研究和监测,以便相应地调整公共卫生措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/6b4d86ed08d4/biology-13-00090-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/7e7eb91b12c1/biology-13-00090-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/498ffba46025/biology-13-00090-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/a0e5d5c88390/biology-13-00090-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/e55c09756b20/biology-13-00090-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/e4d6e4dc80fd/biology-13-00090-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/398ac2872098/biology-13-00090-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/e6d42556afa1/biology-13-00090-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/c336a6d488bc/biology-13-00090-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/f052933d3ba0/biology-13-00090-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/5f8cebcad1cd/biology-13-00090-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/e569e81d7f8f/biology-13-00090-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/cf41104a37ae/biology-13-00090-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/6ec3596f91a0/biology-13-00090-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/945de7be6f26/biology-13-00090-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/0c1f817f4383/biology-13-00090-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/6b4d86ed08d4/biology-13-00090-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/7e7eb91b12c1/biology-13-00090-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/498ffba46025/biology-13-00090-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/a0e5d5c88390/biology-13-00090-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/e55c09756b20/biology-13-00090-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/e4d6e4dc80fd/biology-13-00090-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/398ac2872098/biology-13-00090-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/e6d42556afa1/biology-13-00090-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/c336a6d488bc/biology-13-00090-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/f052933d3ba0/biology-13-00090-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/5f8cebcad1cd/biology-13-00090-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/e569e81d7f8f/biology-13-00090-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/cf41104a37ae/biology-13-00090-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/6ec3596f91a0/biology-13-00090-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/945de7be6f26/biology-13-00090-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/0c1f817f4383/biology-13-00090-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6932/10886209/6b4d86ed08d4/biology-13-00090-g010.jpg

相似文献

[1]
The Omicron XBB.1 Variant and Its Descendants: Genomic Mutations, Rapid Dissemination and Notable Characteristics.

Biology (Basel). 2024-2-1

[2]
Structural evolution of SARS-CoV-2 omicron in human receptor recognition.

J Virol. 2023-8-31

[3]
Comparative Analysis of Conformational Dynamics and Systematic Characterization of Cryptic Pockets in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 Spike Complexes with the ACE2 Host Receptor: Confluence of Binding and Structural Plasticity in Mediating Networks of Conserved Allosteric Sites.

Viruses. 2023-10-10

[4]
Balancing Functional Tradeoffs between Protein Stability and ACE2 Binding in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic and Energetic Changes.

Viruses. 2023-5-10

[5]
The rapid rise of SARS-CoV-2 Omicron subvariants with immune evasion properties: XBB.1.5 and BQ.1.1 subvariants.

MedComm (2020). 2023-3-15

[6]
Molecular Evolutionary Analyses of the Spike Protein Gene and Spike Protein in the SARS-CoV-2 Omicron Subvariants.

Microorganisms. 2023-9-18

[7]
Distinctive Features of the XBB.1.5 and XBB.1.16 Spike Protein Receptor-Binding Domains and Their Roles in Conformational Changes and Angiotensin-Converting Enzyme 2 Binding.

Int J Mol Sci. 2023-8-9

[8]
Computational modeling of the effect of five mutations on the structure of the ACE2 receptor and their correlation with infectivity and virulence of some emerged variants of SARS-CoV-2 suggests mechanisms of binding affinity dysregulation.

Chem Biol Interact. 2022-12-1

[9]
Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants.

Cell. 2023-1-19

[10]
Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2?

Biomed Pharmacother. 2022-10

引用本文的文献

[1]
Adaptation of the Vaccine Prophylaxis Strategy to Variants of the SARS-CoV-2 Virus.

Vaccines (Basel). 2025-7-17

[2]
Beyond the Pandemic Era: Recent Advances and Efficacy of SARS-CoV-2 Vaccines Against Emerging Variants of Concern.

Vaccines (Basel). 2025-4-17

[3]
Genomic evolution of SARS-CoV-2 in Morocco: Insights from whole genome sequences collected from 2020 to 2024.

Virus Res. 2025-3

[4]
Genetic diversity and genomic epidemiology of SARS-CoV-2 during the first 3 years of the pandemic in Morocco: comprehensive sequence analysis, including the unique lineage B.1.528 in Morocco.

Access Microbiol. 2024-10-7

本文引用的文献

[1]
Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants.

Nat Commun. 2023-5-16

[2]
Virological characteristics of the SARS-CoV-2 omicron XBB.1.16 variant.

Lancet Infect Dis. 2023-6

[3]
Two sides of the same coin: the N-terminal and the receptor binding domains of SARS-CoV-2 Spike.

Future Virol. 2023-2

[4]
Genome-based comparison between the recombinant SARS-CoV-2 XBB and its parental lineages.

J Med Virol. 2023-3

[5]
Computational analysis of the sequence-structure relation in SARS-CoV-2 spike protein using protein contact networks.

Sci Rep. 2023-2-17

[6]
Antiviral and bivalent vaccine efficacy against an omicron XBB.1.5 isolate.

Lancet Infect Dis. 2023-4

[7]
SARS-CoV-2 Omicron subvariants exhibit distinct fusogenicity, but similar sensitivity, to pan-CoV fusion inhibitors.

Emerg Microbes Infect. 2023-12

[8]
Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant.

Lancet Infect Dis. 2023-3

[9]
Risk of reinfection, vaccine protection, and severity of infection with the BA.5 omicron subvariant: a nation-wide population-based study in Denmark.

Lancet Infect Dis. 2023-2

[10]
Increased household transmission and immune escape of the SARS-CoV-2 Omicron compared to Delta variants.

Nat Commun. 2022-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索