Wang Qiang-Sheng, Shi Qi-Qin, Meng Ye, Chen Meng-Ping, Hou Jian
Department of Hematology, Ningbo Hangzhou Bay Hospital, Ningbo, China.
Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, China.
Front Genet. 2022 May 26;13:897886. doi: 10.3389/fgene.2022.897886. eCollection 2022.
Multiple myeloma (MM) is characterized by abnormal proliferation of bone marrow clonal plasma cells. Tumor immunotherapy, a new therapy that has emerged in recent years, offers hope to patients, and studying the expression characteristics of immune-related genes (IRGs) based on whole bone marrow gene expression profiling (GEP) in MM patients can help guide personalized immunotherapy. In this study, we explored the potential prognostic value of IRGs in MM by combining GEP and clinical data from the GEO database. We identified hub IRGs and transcription factors (TFs) associated with disease progression by Weighted Gene Co-expression Network Analysis (WGCNA), and modeled immune-related prognostic signature by univariate and multivariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, the prognostic ability of signature was verified by multiple statistical methods. Moreover, ssGSEA and GSEA algorithm reveled different immunological characteristics and biological function variation in different risk groups. We mapped the hub IRGs by protein-protein interaction network (PPI) and extracted the top 10 ranked genes. Finally, we conducted vitro assays on two alternative IRGs. Our study identified a total of 14 TFs and 88 IRGs associated with International Staging System (ISS). Ten IRGs were identified by Cox -LASSO regression analysis, and used to develop optimal prognostic signature for overall survival (OS) in MM patients. The 10-IRGs were BDNF, CETP, CD70, LMBR, LTBP1, NENF, NR1D1, NR1H2, PTK2B and SEMA4. In different groups, risk signatures showed excellent survival prediction ability, and MM patients also could be stratified at survival risk. In addition, IRF7 and SHC1 were hub IRGs in PPI network, and the vitro assays proved that they could promote tumor progression. Notably, ssGSEA and GSEA results confirmed that different risk groups could accurately indicate the status of tumor microenvironment (TME) and activation of biological pathways. Our study suggested that immune-related signature could be used as prognostic markers in MM patients.
多发性骨髓瘤(MM)的特征是骨髓克隆性浆细胞异常增殖。肿瘤免疫疗法是近年来出现的一种新疗法,给患者带来了希望,基于MM患者全骨髓基因表达谱(GEP)研究免疫相关基因(IRG)的表达特征有助于指导个性化免疫治疗。在本研究中,我们通过结合GEP和来自GEO数据库的临床数据,探索了IRG在MM中的潜在预后价值。我们通过加权基因共表达网络分析(WGCNA)确定了与疾病进展相关的核心IRG和转录因子(TF),并通过单变量和多变量Cox以及最小绝对收缩和选择算子(LASSO)回归分析建立了免疫相关预后特征模型。随后,通过多种统计方法验证了该特征的预后能力。此外,单样本基因集富集分析(ssGSEA)和基因集富集分析(GSEA)算法揭示了不同风险组中不同的免疫特征和生物学功能变化。我们通过蛋白质-蛋白质相互作用网络(PPI)绘制了核心IRG,并提取了排名前十的基因。最后,我们对两个备选IRG进行了体外实验。我们的研究共鉴定出14个与国际分期系统(ISS)相关的TF和88个IRG。通过Cox-LASSO回归分析确定了10个IRG,并用于建立MM患者总生存期(OS)的最佳预后特征。这10个IRG分别是脑源性神经营养因子(BDNF)、胆固醇酯转运蛋白(CETP)、CD70、肢体相关膜蛋白(LMBR)、潜伏性转化生长因子β结合蛋白1(LTBP1)、神经内分泌因子(NENF)、核受体亚家族1D组成员1(NR1D1)、核受体亚家族1H组成员2(NR1H2)、蛋白酪氨酸激酶2β(PTK2B)和信号素4(SEMA4)。在不同组中;风险特征显示出优异的生存预测能力,MM患者也可按生存风险分层。此外,干扰素调节因子7(IRF7)和含Src同源2结构域的胶原蛋白磷酸化底物1(SHC1)是PPI网络中的核心IRG,体外实验证明它们可促进肿瘤进展。值得注意的是,ssGSEA和GSEA结果证实,不同风险组可准确指示肿瘤微环境(TME)状态和生物学途径的激活。我们的研究表明,免疫相关特征可作为MM患者的预后标志物。