Suppr超能文献

GasHisSDB:一个用于胃癌计算机辅助诊断的新型胃组织病理学图像数据集。

GasHisSDB: A new gastric histopathology image dataset for computer aided diagnosis of gastric cancer.

作者信息

Hu Weiming, Li Chen, Li Xiaoyan, Rahaman Md Mamunur, Ma Jiquan, Zhang Yong, Chen Haoyuan, Liu Wanli, Sun Changhao, Yao Yudong, Sun Hongzan, Grzegorzek Marcin

机构信息

Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, 110 169, Shenyang, China.

Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, 110 169, Shenyang, China.

出版信息

Comput Biol Med. 2022 Mar;142:105207. doi: 10.1016/j.compbiomed.2021.105207. Epub 2022 Jan 6.

Abstract

BACKGROUND AND OBJECTIVE

Gastric cancer is the fifth most common cancer globally, and early detection of gastric cancer is essential to save lives. Histopathological examination of gastric cancer is the gold standard for the diagnosis of gastric cancer. However, computer-aided diagnostic techniques are challenging to evaluate due to the scarcity of publicly available gastric histopathology image datasets.

METHODS

In this paper, a noble publicly available Gastric Histopathology Sub-size Image Database (GasHisSDB) is published to identify classifiers' performance. Specifically, two types of data are included: normal and abnormal, with a total of 245,196 tissue case images. In order to prove that the methods of different periods in the field of image classification have discrepancies on GasHisSDB, we select a variety of classifiers for evaluation. Seven classical machine learning classifiers, three Convolutional Neural Network classifiers, and a novel transformer-based classifier are selected for testing on image classification tasks.

RESULTS

This study performed extensive experiments using traditional machine learning and deep learning methods to prove that the methods of different periods have discrepancies on GasHisSDB. Traditional machine learning achieved the best accuracy rate of 86.08% and a minimum of just 41.12%. The best accuracy of deep learning reached 96.47% and the lowest was 86.21%. Accuracy rates vary significantly across classifiers.

CONCLUSIONS

To the best of our knowledge, it is the first publicly available gastric cancer histopathology dataset containing a large number of images for weakly supervised learning. We believe that GasHisSDB can attract researchers to explore new algorithms for the automated diagnosis of gastric cancer, which can help physicians and patients in the clinical setting.

摘要

背景与目的

胃癌是全球第五大常见癌症,早期发现胃癌对于挽救生命至关重要。胃癌的组织病理学检查是诊断胃癌的金标准。然而,由于公开可用的胃组织病理学图像数据集稀缺,计算机辅助诊断技术的评估具有挑战性。

方法

本文发布了一个全新的公开可用的胃组织病理学子尺寸图像数据库(GasHisSDB),以识别分类器的性能。具体而言,包括两种类型的数据:正常和异常,共有245,196张组织病例图像。为了证明图像分类领域不同时期的方法在GasHisSDB上存在差异,我们选择了多种分类器进行评估。选择了七个经典机器学习分类器、三个卷积神经网络分类器和一个基于新型变压器的分类器,用于图像分类任务测试。

结果

本研究使用传统机器学习和深度学习方法进行了广泛实验,以证明不同时期的方法在GasHisSDB上存在差异。传统机器学习的最佳准确率为86.08%,最低仅为41.12%。深度学习的最佳准确率达到96.47%,最低为86.21%。不同分类器的准确率差异显著。

结论

据我们所知,这是首个公开可用的包含大量用于弱监督学习图像的胃癌组织病理学数据集。我们相信GasHisSDB能够吸引研究人员探索用于胃癌自动诊断的新算法,这有助于临床环境中的医生和患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验