Suppr超能文献

登革热蚊媒风险预测:基于时空分析的多分量融合方法。

Dengue Risk Forecast with Mosquito Vector: A Multicomponent Fusion Approach Based on Spatiotemporal Analysis.

机构信息

College of Computer Science and Technology, Jilin University, Changchun, China.

Institute of Software, Chinese Academy of Sciences, Beijing, China.

出版信息

Comput Math Methods Med. 2022 Jun 2;2022:2515432. doi: 10.1155/2022/2515432. eCollection 2022.

Abstract

Dengue as an acute infectious disease threatens global public health and has sparked broad research interest. However, existing studies generally ignore the spatial dependencies involved in dengue forecast, and consideration of temporal periodicity is absent. In this work, we propose a spatiotemporal component fusion model (STCFM) to solve the dengue risk forecast issue. Considering that mosquitoes are an important vector of dengue transmission, we introduce feature factors involving mosquito abundance and spatiotemporal lags to model temporal trends and spatial distributions separately on the basis of statistical properties. Specifically, we conduct multiscale modeling of temporal dependencies to enhance the forecast capability of relevant periods by capturing the historical variation patterns of the data across different segments in the temporal dimension. In the spatial dimension, we quantify the multivariate spatial correlation analysis as additional features to strengthen the spatial feature representation and adopt the ConvLSTM model to learn spatial dependencies adequately. The final forecast results are obtained by stacking strategy fusion in ensemble learning. We conduct experiments on real dengue datasets. The results indicate that STCFM improves prediction accuracy through effective spatiotemporal feature representations and outperforms candidate models with a reasonable component construction strategy.

摘要

登革热作为一种急性传染病,威胁着全球公共卫生,引发了广泛的研究兴趣。然而,现有研究通常忽略了登革热预测中涉及的空间相关性,也没有考虑时间周期性。在这项工作中,我们提出了一种时空分量融合模型(STCFM)来解决登革热风险预测问题。考虑到蚊子是登革热传播的重要媒介,我们引入了涉及蚊子数量和时空滞后的特征因素,分别基于统计特性对时间趋势和空间分布进行建模。具体来说,我们对时间依赖性进行多尺度建模,通过捕获数据在时间维度上不同段之间的历史变化模式,增强相关时间段的预测能力。在空间维度上,我们将多元空间相关分析量化为附加特征,以增强空间特征表示,并采用 ConvLSTM 模型充分学习空间相关性。最终的预测结果通过集成学习中的堆叠策略融合获得。我们在真实的登革热数据集上进行了实验。结果表明,STCFM 通过有效的时空特征表示提高了预测精度,并且具有合理的组件构建策略,优于候选模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d72f/9184161/2fa995b91d7c/CMMM2022-2515432.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验