Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia.
Department of Computer Science and Engineering, Vardhaman College of Engineering (Autonomous), Hyderabad, Telangana, India.
Comput Intell Neurosci. 2022 Jun 1;2022:7776319. doi: 10.1155/2022/7776319. eCollection 2022.
Biomedical engineering involves ideologies and problem-solving methods of engineering to biology and medicine. Malaria is a life-threatening illness, which has gained significant attention among researchers. Since the manual diagnosis of malaria in a clinical setting is tedious, automated tools based on computational intelligence (CI) tools have gained considerable interest. Though earlier studies were focused on the handcrafted features, the diagnostic accuracy can be boosted through deep learning (DL) methods. This study introduces a new Barnacles Mating Optimizer with Deep Transfer Learning Enabled Biomedical Malaria Parasite Detection and Classification (BMODTL-BMPC) model. The presented BMODTL-BMPC model involves the design of intelligent models for the recognition and classification of malaria parasites. Initially, the Gaussian filtering (GF) approach is employed to eradicate noise in blood smear images. Then, Graph cuts (GC) segmentation technique is applied to determine the affected regions in the blood smear images. Moreover, the barnacles mating optimizer (BMO) algorithm with the NasNetLarge model is employed for the feature extraction process. Furthermore, the extreme learning machine (ELM) classification model is employed for the identification and classification of malaria parasites. To assure the enhanced outcomes of the BMODTL-BMPC technique, a wide-ranging experimentation analysis is performed using a benchmark dataset. The experimental results show that the BMODTL-BMPC technique outperforms other recent approaches.
生物医学工程涉及工程学的思想和方法,以生物学和医学为研究对象。疟疾是一种危及生命的疾病,引起了研究人员的高度关注。由于在临床环境中手动诊断疟疾非常繁琐,因此基于计算智能 (CI) 工具的自动化工具引起了相当大的兴趣。虽然早期的研究集中在手工制作的特征上,但通过深度学习 (DL) 方法可以提高诊断准确性。本研究提出了一种新的 Barnacles Mating Optimizer with Deep Transfer Learning Enabled Biomedical Malaria Parasite Detection and Classification (BMODTL-BMPC) 模型。所提出的 BMODTL-BMPC 模型涉及用于识别和分类疟原虫的智能模型的设计。首先,采用高斯滤波 (GF) 方法消除血涂片图像中的噪声。然后,应用图切割 (GC) 分割技术确定血涂片图像中的受影响区域。此外,采用带有 NasNetLarge 模型的 Barnacles 交配优化器 (BMO) 算法进行特征提取。此外,采用极限学习机 (ELM) 分类模型进行疟原虫的识别和分类。为了确保 BMODTL-BMPC 技术的增强效果,使用基准数据集进行了广泛的实验分析。实验结果表明,BMODTL-BMPC 技术优于其他最近的方法。