Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China.
Department of Veterinary Medicine, Zhejiang University, Hangzhou, People's Republic of China.
PLoS Pathog. 2022 Jun 13;18(6):e1010620. doi: 10.1371/journal.ppat.1010620. eCollection 2022 Jun.
Intestinal microbial metabolites have been increasingly recognized as important regulators of enteric viral infection. However, very little information is available about which specific microbiota-derived metabolites are crucial for swine enteric coronavirus (SECoV) infection in vivo. Using swine acute diarrhea syndrome (SADS)-CoV as a model, we were able to identify a greatly altered bile acid (BA) profile in the small intestine of infected piglets by untargeted metabolomic analysis. Using a newly established ex vivo model-the stem cell-derived porcine intestinal enteroid (PIE) culture-we demonstrated that certain BAs, cholic acid (CA) in particular, enhance SADS-CoV replication by acting on PIEs at the early phase of infection. We ruled out the possibility that CA exerts an augmenting effect on viral replication through classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling, innate immune suppression or viral attachment. BA induced multiple cellular responses including rapid changes in caveolae-mediated endocytosis, endosomal acidification and dynamics of the endosomal/lysosomal system that are critical for SADS-CoV replication. Thus, our findings shed light on how SECoVs exploit microbiome-derived metabolite BAs to swiftly establish viral infection and accelerate replication within the intestinal microenvironment.
肠道微生物代谢产物已被越来越多地认为是肠道病毒感染的重要调节剂。然而,关于哪些特定的微生物衍生代谢物对于体内猪肠道冠状病毒 (SECoV) 感染至关重要,知之甚少。我们使用猪急性腹泻综合征 (SADS)-CoV 作为模型,通过非靶向代谢组学分析,能够鉴定出感染仔猪小肠中胆汁酸 (BA) 谱发生了极大改变。通过新建立的体外模型——干细胞衍生的猪肠类器官 (PIE) 培养,我们证明了某些 BA,特别是胆酸 (CA),通过在感染早期作用于 PIE 来增强 SADS-CoV 的复制。我们排除了 CA 通过经典法尼醇 X 受体或 Takeda G 蛋白偶联受体 5 信号、先天免疫抑制或病毒附着来增强病毒复制的可能性。BA 诱导了多种细胞反应,包括 caveolae 介导的内吞作用、内体酸化和内体/溶酶体系统动力学的快速变化,这些反应对于 SADS-CoV 的复制至关重要。因此,我们的研究结果阐明了 SECoV 如何利用微生物组衍生代谢物 BA 迅速建立病毒感染并在肠道微环境中加速复制。