University of Texas Medical Branch at Galveston, Department of Biochemistry and Molecular Biology, Galveston, Texas, USA.
Institut für Virologie und Zellbiologie, Universität zu Lübeck, Lübeck, Germany.
J Virol. 2021 Jun 10;95(13):e0017621. doi: 10.1128/JVI.00176-21.
Noroviruses, members of the family, are the major cause of epidemic gastroenteritis in humans, causing ∼20 million cases annually. These plus-strand RNA viruses have T=3 icosahedral protein capsids with 90 pronounced protruding (P) domain dimers to which antibodies and cellular receptors bind. In the case of mouse norovirus (MNV), bile salts have been shown to enhance receptor (CD300lf) binding to the P domain. We demonstrated previously that the P domains of several genotypes are markedly flexible and "float" over the shell, but the role of this flexibility was unclear. Recently, we demonstrated that bile causes a 90° rotation and collapse of the P domain onto the shell surface. Since bile binds distally to the P-shell interface, it was not at all clear how it could cause such dramatic changes. Here, we present the near-atomic resolution cryo-electron microscopy (cryo-EM) structure of the MNV protruding domain complexed with a neutralizing Fab. On the basis of previous results, we show here that bile salts cause allosteric conformational changes in the P domain that block antibody recognition of the top of the P domain. In addition, bile causes a major rearrangement of the P domain dimers that is likely responsible for the bile-induced collapse of the P domain onto the shell. In the contracted shell conformation, antibodies to the P1 and shell domains are not expected to bind. Therefore, at the site of infection in the gut, the host's own bile allows the virus to escape antibody-mediated neutralization while enhancing cell attachment. The major feature of calicivirus capsids is the 90 protruding domains (P domains) that are the site of cell receptor attachment and antibody epitopes. We demonstrated previously that these P domains are highly mobile and that bile causes these "floating" P domains in mouse norovirus (MNV) to contract onto the shell surface. Here, we present the near-atomic cryo-EM structure of the isolated MNV P domain complexed with a neutralizing Fab fragment. Our data show that bile causes two sets of changes. First, bile causes allosteric conformational changes in the epitopes at the top of the P domain that block antibody binding. Second, bile causes the P domain dimer subunits to rotate relative to each other, causing a contraction of the P domain that buries epitopes at the base of the P and shell domains. Taken together, the results show that MNV uses the host's own metabolites to enhance cell receptor binding while simultaneously blocking antibody recognition.
诺如病毒属于杯状病毒科,是人类流行性肠胃炎的主要致病原,每年导致约 2000 万病例。这些正链 RNA 病毒具有 T=3 的二十面体蛋白衣壳,其上有 90 个明显突出的(P)结构域二聚体,抗体和细胞受体与之结合。在鼠诺如病毒(MNV)的情况下,已证明胆汁盐可增强受体(CD300lf)与 P 结构域的结合。我们之前的研究表明,几种基因型的 P 结构域明显具有柔韧性,可以在壳上“漂浮”,但这种柔韧性的作用尚不清楚。最近,我们证明胆汁会导致 P 结构域发生 90°旋转和折叠,使其与壳表面贴合。由于胆汁结合在 P-壳界面的远端,因此根本不清楚它如何能引起如此剧烈的变化。在此,我们报告了 MNV 突出结构域与中和 Fab 复合物的近原子分辨率冷冻电镜(cryo-EM)结构。基于先前的结果,我们在此表明,胆汁盐会引起 P 结构域的变构构象变化,从而阻止抗体识别 P 结构域的顶部。此外,胆汁会导致 P 结构域二聚体的重大重排,这可能是胆汁诱导 P 结构域折叠到壳上的原因。在收缩的壳构象中,针对 P1 和壳结构域的抗体预计不会结合。因此,在肠道感染部位,宿主自身的胆汁使病毒能够逃避抗体介导的中和作用,同时增强细胞附着。杯状病毒衣壳的主要特征是 90 个突出的结构域(P 结构域),是细胞受体附着和抗体表位的部位。我们之前的研究表明,这些 P 结构域具有高度的可动性,并且胆汁会导致 MNV 中的这些“漂浮”P 结构域收缩到壳表面。在此,我们报告了分离的 MNV P 结构域与中和 Fab 片段复合物的近原子 cryo-EM 结构。我们的数据表明,胆汁引起了两组变化。首先,胆汁引起 P 结构域顶部表位的变构构象变化,从而阻止抗体结合。其次,胆汁导致 P 结构域二聚体亚基相互旋转,导致 P 结构域收缩,从而掩盖 P 和壳结构域底部的表位。综上所述,结果表明 MNV 利用宿主自身的代谢物来增强细胞受体结合,同时阻止抗体识别。