Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
Brain Pathol. 2023 Jan;33(1):e13099. doi: 10.1111/bpa.13099. Epub 2022 Jun 13.
Cerebral ischemia is the leading cause for long-term disability and mortality in adults due to massive neuronal death. Currently, there is no pharmacological treatment available to limit progressive neuronal death after stroke. A major mechanism causing ischemia-induced neuronal death is the excessive release of glutamate and the associated overexcitation of neurons (excitotoxicity). Normally, GABA receptors control neuronal excitability in the brain via prolonged inhibition. However, excitotoxic conditions rapidly downregulate GABA receptors via a CaMKII-mediated mechanism and thereby diminish adequate inhibition that could counteract neuronal overexcitation and neuronal death. To prevent the deleterious downregulation of GABA receptors, we developed a cell-penetrating synthetic peptide (R1-Pep) that inhibits the interaction of GABA receptors with CaMKII. Administration of this peptide to cultured cortical neurons exposed to excitotoxic conditions restored cell surface expression and function of GABA receptors. R1-Pep did not affect CaMKII expression or activity but prevented its T286 autophosphorylation that renders it autonomously and persistently active. Moreover, R1-Pep counteracted the aberrant downregulation of G protein-coupled inwardly rectifying K channels and the upregulation of N-type voltage-gated Ca channels, the main effectors of GABA receptors. The restoration of GABA receptors activated the Akt survival pathway and inhibited excitotoxic neuronal death with a wide time window in cultured neurons. Restoration of GABA receptors and neuroprotective activity of R1-Pep was verified by using brain slices prepared from mice after middle cerebral artery occlusion (MCAO). Treatment with R1-Pep restored normal GABA receptor expression and GABA receptor-mediated K channel currents. This reduced MCAO-induced neuronal excitability and inhibited neuronal death. These results support the hypothesis that restoration of GABA receptor expression under excitatory conditions provides neuroprotection and might be the basis for the development of a selective intervention to inhibit progressive neuronal death after ischemic stroke.
脑缺血是成年人长期残疾和死亡的主要原因,其原因是大量神经元死亡。目前,尚无可用的药物治疗方法来限制中风后神经元的进行性死亡。导致缺血性神经元死亡的主要机制是谷氨酸的过度释放和神经元的过度兴奋(兴奋性毒性)。正常情况下,GABA 受体通过长时间的抑制来控制大脑中的神经元兴奋性。然而,兴奋性毒性条件会通过 CaMKII 介导的机制迅速下调 GABA 受体,从而减少足够的抑制作用,以抵消神经元的过度兴奋和神经元死亡。为了防止 GABA 受体的有害下调,我们开发了一种穿透细胞的合成肽(R1-Pep),该肽可以抑制 GABA 受体与 CaMKII 的相互作用。将该肽施用于暴露于兴奋性毒性条件下的培养皮质神经元中,可恢复 GABA 受体的细胞表面表达和功能。R1-Pep 不影响 CaMKII 的表达或活性,但可防止其 T286 自动磷酸化,从而使其自主且持续激活。此外,R1-Pep 可对抗 G 蛋白偶联内向整流钾通道的异常下调和 N 型电压门控 Ca 通道的上调,GABA 受体的主要效应物。GABA 受体的恢复激活了 Akt 存活途径,并在培养神经元中具有广泛的时间窗口抑制兴奋性毒性神经元死亡。通过使用大脑中动脉闭塞(MCAO)后从小鼠制备的脑切片验证了 GABA 受体的恢复和 R1-Pep 的神经保护活性。R1-Pep 的治疗恢复了正常的 GABA 受体表达和 GABA 受体介导的 K 通道电流。这降低了 MCAO 诱导的神经元兴奋性并抑制了神经元死亡。这些结果支持了这样一种假说,即在兴奋性条件下恢复 GABA 受体表达可提供神经保护作用,并且可能是开发选择性干预措施以抑制缺血性中风后进行性神经元死亡的基础。