Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, 4056 Basel, Switzerland.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13924-9. doi: 10.1073/pnas.1000909107. Epub 2010 Jul 19.
GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GABAB receptors are abundant on dendritic spines, where they dampen postsynaptic excitability and inhibit Ca2+ influx through NMDA receptors when activated by spillover of GABA from neighboring GABAergic terminals. Here, we show that an excitatory signaling cascade enables spines to counteract this GABAB-mediated inhibition. We found that NMDA application to cultured hippocampal neurons promotes dynamin-dependent endocytosis of GABAB receptors. NMDA-dependent internalization of GABAB receptors requires activation of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), which associates with GABAB receptors in vivo and phosphorylates serine 867 (S867) in the intracellular C terminus of the GABAB1 subunit. Blockade of either CaMKII or phosphorylation of S867 renders GABAB receptors refractory to NMDA-mediated internalization. Time-lapse two-photon imaging of organotypic hippocampal slices reveals that activation of NMDA receptors removes GABAB receptors within minutes from the surface of dendritic spines and shafts. NMDA-dependent S867 phosphorylation and internalization is predominantly detectable with the GABAB1b subunit isoform, which is the isoform that clusters with inhibitory effector K+ channels in the spines. Consistent with this, NMDA receptor activation in neurons impairs the ability of GABAB receptors to activate K+ channels. Thus, our data support that NMDA receptor activity endocytoses postsynaptic GABAB receptors through CaMKII-mediated phosphorylation of S867. This provides a means to spare NMDA receptors at individual glutamatergic synapses from reciprocal inhibition through GABAB receptors.
GABAB 受体是 GABA 的 G 蛋白偶联受体,GABA 是大脑中的主要抑制性神经递质。GABAB 受体在树突棘上丰富,当它们被来自相邻 GABA 能末梢的 GABA 溢出激活时,会抑制 NMDA 受体的 Ca2+内流,从而抑制突触后兴奋性。在这里,我们表明兴奋性信号级联使棘突能够抵消这种 GABAB 介导的抑制。我们发现,NMDA 应用于培养的海马神经元促进 GABAB 受体依赖 dynamin 的内吞作用。NMDA 依赖性 GABAB 受体内化需要 Ca2+/钙调蛋白依赖性蛋白激酶 II(CaMKII)的激活,CaMKII 在体内与 GABAB 受体结合,并磷酸化 GABAB1 亚基胞内 C 末端的丝氨酸 867(S867)。CaMKII 阻断或 S867 磷酸化使 GABAB 受体对 NMDA 介导的内化具有抗性。器官型海马切片的延时双光子成像显示,NMDA 受体的激活在几分钟内将 GABAB 受体从树突棘和轴突表面移除。NMDA 依赖性 S867 磷酸化和内化主要可检测到 GABAB1b 亚基同工型,该同工型与棘突中的抑制性效应 K+通道聚集。与此一致的是,神经元中 NMDA 受体的激活会损害 GABAB 受体激活 K+通道的能力。因此,我们的数据支持 NMDA 受体活性通过 CaMKII 介导的 S867 磷酸化内化突触后 GABAB 受体。这为在单个谷氨酸能突触处从 GABAB 受体的反馈抑制中保留 NMDA 受体提供了一种方法。