Suppr超能文献

基于递归条件高斯约束变分解缠的有序无监督域适应

Ordinal Unsupervised Domain Adaptation With Recursively Conditional Gaussian Imposed Variational Disentanglement.

作者信息

Liu Xiaofeng, Li Site, Ge Yubin, Ye Pengyi, You Jane, Lu Jun

出版信息

IEEE Trans Pattern Anal Mach Intell. 2025 May;47(5):3219-3232. doi: 10.1109/TPAMI.2022.3183115. Epub 2025 Apr 8.

Abstract

There has been a growing interest in unsupervised domain adaptation (UDA) to alleviate the data scalability issue, while the existing works usually focus on classifying independently discrete labels. However, in many tasks (e.g., medical diagnosis), the labels are discrete and successively distributed. The UDA for ordinal classification requires inducing non-trivial ordinal distribution prior to the latent space. Target for this, the partially ordered set (poset) is defined for constraining the latent vector. Instead of the typically i.i.d. Gaussian latent prior, in this work, a recursively conditional Gaussian (RCG) set is proposed for ordered constraint modeling, which admits a tractable joint distribution prior. Furthermore, we are able to control the density of content vectors that violate the poset constraint by a simple "three-sigma rule." We explicitly disentangle the cross-domain images into a shared ordinal prior induced ordinal content space and two separate source/target ordinal-unrelated spaces, and the self-training is worked on the shared space exclusively for ordinal-aware domain alignment. Extensive experiments on UDA medical diagnoses and facial age estimation demonstrate its effectiveness.

摘要

为缓解数据可扩展性问题,无监督域适应(UDA)受到越来越多的关注,而现有工作通常专注于对独立离散标签进行分类。然而,在许多任务(如医学诊断)中,标签是离散且连续分布的。序数分类的UDA需要在潜在空间之前引入非平凡的序数分布。为此,定义了偏序集(poset)来约束潜在向量。与典型的独立同分布高斯潜在先验不同,在这项工作中,提出了一种递归条件高斯(RCG)集用于有序约束建模,它允许一个易于处理的联合分布先验。此外,我们能够通过一个简单的“三西格玛规则”来控制违反偏序集约束的内容向量的密度。我们明确地将跨域图像分解为一个由共享序数先验诱导的序数内容空间和两个单独的与源/目标序数无关的空间,并且自训练仅在共享空间上进行,以实现序数感知的域对齐。在UDA医学诊断和面部年龄估计上的大量实验证明了其有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验