Suppr超能文献

用于多智能任务机器人的具有时空弹性的神经形态计算芯片。

Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots.

机构信息

Center for Brain-Inspired Computing Research (CBICR), Beijing Innovation Center for Future Chip, Optical Memory National Engineering Research Center, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.

Lynxi Technologies Co. Ltd, Beijing, China.

出版信息

Sci Robot. 2022 Jun 15;7(67):eabk2948. doi: 10.1126/scirobotics.abk2948.

Abstract

Recent advances in artificial intelligence have enhanced the abilities of mobile robots in dealing with complex and dynamic scenarios. However, to enable computationally intensive algorithms to be executed locally in multitask robots with low latency and high efficiency, innovations in computing hardware are required. Here, we report TianjicX, a neuromorphic computing hardware that can support true concurrent execution of multiple cross-computing-paradigm neural network (NN) models with various coordination manners for robotics. With spatiotemporal elasticity, TianjicX can support adaptive allocation of computing resources and scheduling of execution time for each task. Key to this approach is a high-level model, "Rivulet," which bridges the gap between robotic-level requirements and hardware implementations. It abstracts the execution of NN tasks through distribution of static data and streaming of dynamic data to form the basic activity context, adopts time and space slices to achieve elastic resource allocation for each activity, and performs configurable hybrid synchronous-asynchronous grouping. Thereby, Rivulet is capable of supporting independent and interactive execution. Building on Rivulet with hardware design for realizing spatiotemporal elasticity, a 28-nanometer TianjicX neuromorphic chip with event-driven, high parallelism, low latency, and low power was developed. Using a single TianjicX chip and a specially developed compiler stack, we built a multi-intelligent-tasking mobile robot, Tianjicat, to perform a cat-and-mouse game. Multiple tasks, including sound recognition and tracking, object recognition, obstacle avoidance, and decision-making, can be concurrently executed. Compared with NVIDIA Jetson TX2, latency is substantially reduced by 79.09 times, and dynamic power is reduced by 50.66%.

摘要

近年来,人工智能的进步提高了移动机器人在处理复杂和动态场景中的能力。然而,为了使计算密集型算法能够在具有低延迟和高效率的多任务机器人中本地执行,需要计算硬件方面的创新。在这里,我们报告了 TianjicX,这是一种神经形态计算硬件,它可以支持多种协调方式的多个跨计算范例神经网络 (NN) 模型的真正并发执行,适用于机器人技术。TianjicX 具有时空弹性,可以支持为每个任务自适应分配计算资源和执行时间调度。这种方法的关键是一个高级模型“Rivulet”,它弥合了机器人级要求和硬件实现之间的差距。它通过静态数据的分布和动态数据的流来抽象 NN 任务的执行,形成基本的活动上下文,采用时间和空间片为每个活动实现弹性资源分配,并执行可配置的混合同步异步分组。因此,Rivulet 能够支持独立和交互执行。基于 Rivulet 并结合实现时空弹性的硬件设计,我们开发了一款 28 纳米 TianjicX 神经形态芯片,具有事件驱动、高并行性、低延迟和低功耗的特点。使用单个 TianjicX 芯片和专门开发的编译器堆栈,我们构建了一个多智能任务移动机器人 Tianjicat,可以进行猫捉老鼠的游戏。多个任务,包括声音识别和跟踪、物体识别、障碍物回避和决策等,可以同时执行。与 NVIDIA Jetson TX2 相比,延迟大大降低了 79.09 倍,动态功耗降低了 50.66%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验