Suppr超能文献

基于尖峰神经网络的时间树突异质性学习多时间尺度动力学。

Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics.

机构信息

Center for Brain Inspired Computing Research (CBICR), Department of Precision Instrument, Tsinghua University, Beijing, China.

Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria.

出版信息

Nat Commun. 2024 Jan 4;15(1):277. doi: 10.1038/s41467-023-44614-z.

Abstract

It is widely believed the brain-inspired spiking neural networks have the capability of processing temporal information owing to their dynamic attributes. However, how to understand what kind of mechanisms contributing to the learning ability and exploit the rich dynamic properties of spiking neural networks to satisfactorily solve complex temporal computing tasks in practice still remains to be explored. In this article, we identify the importance of capturing the multi-timescale components, based on which a multi-compartment spiking neural model with temporal dendritic heterogeneity, is proposed. The model enables multi-timescale dynamics by automatically learning heterogeneous timing factors on different dendritic branches. Two breakthroughs are made through extensive experiments: the working mechanism of the proposed model is revealed via an elaborated temporal spiking XOR problem to analyze the temporal feature integration at different levels; comprehensive performance benefits of the model over ordinary spiking neural networks are achieved on several temporal computing benchmarks for speech recognition, visual recognition, electroencephalogram signal recognition, and robot place recognition, which shows the best-reported accuracy and model compactness, promising robustness and generalization, and high execution efficiency on neuromorphic hardware. This work moves neuromorphic computing a significant step toward real-world applications by appropriately exploiting biological observations.

摘要

人们普遍认为,受大脑启发的尖峰神经网络具有处理时间信息的能力,这要归功于它们的动态属性。然而,如何理解是什么样的机制促成了学习能力,并利用尖峰神经网络丰富的动态特性来实际解决复杂的时间计算任务,仍有待探索。在本文中,我们确定了捕捉多时间尺度分量的重要性,在此基础上提出了一种具有时间树突异质性的多腔室尖峰神经网络模型。该模型通过自动学习不同树突分支上的异构定时因子,实现了多时间尺度动力学。通过广泛的实验取得了两个突破:通过详细的时间尖峰异或问题揭示了所提出模型的工作机制,以分析不同层次的时间特征整合;在语音识别、视觉识别、脑电图信号识别和机器人位置识别等几个时间计算基准上,该模型在普通尖峰神经网络上实现了全面的性能优势,表现出了最佳的准确性和模型紧凑性,有望在神经形态硬件上具有鲁棒性和泛化性,以及高执行效率。这项工作通过适当利用生物观察,使神经形态计算朝着实际应用迈出了重要的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/233d/10766638/41f4bc7caaf0/41467_2023_44614_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验