Suppr超能文献

机器学习/分子动力学蛋白质结构预测方法研究蛋白质构象集合。

Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble.

机构信息

Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden.

Department of Medicinal Chemistry, Research and Early Development, AstraZeneca, Respiratory & Immunology, BioPharmaceuticals R&DPepparedsleden 1, 43183, Mölndal, Sweden.

出版信息

Sci Rep. 2022 Jun 15;12(1):10018. doi: 10.1038/s41598-022-13714-z.

Abstract

Proteins exist in several different conformations. These structural changes are often associated with fluctuations at the residue level. Recent findings show that co-evolutionary analysis coupled with machine-learning techniques improves the precision by providing quantitative distance predictions between pairs of residues. The predicted statistical distance distribution from Multi Sequence Analysis reveals the presence of different local maxima suggesting the flexibility of key residue pairs. Here we investigate the ability of the residue-residue distance prediction to provide insights into the protein conformational ensemble. We combine deep learning approaches with mechanistic modeling to a set of proteins that experimentally showed conformational changes. The predicted protein models were filtered based on energy scores, RMSD clustering, and the centroids selected as the lowest energy structure per cluster. These models were compared to the experimental-Molecular Dynamics (MD) relaxed structure by analyzing the backbone residue torsional distribution and the sidechain orientations. Our pipeline allows to retrieve the experimental structural dynamics experimentally represented by different X-ray conformations for the same sequence as well the conformational space observed with the MD simulations. We show the potential correlation between the experimental structure dynamics and the predicted model ensemble demonstrating the susceptibility of the current state-of-the-art methods in protein folding and dynamics prediction and pointing out the areas of improvement.

摘要

蛋白质存在于几种不同的构象中。这些结构变化通常与残基水平的波动有关。最近的研究结果表明,共进化分析与机器学习技术相结合,可以通过提供残基对之间的定量距离预测来提高精度。多序列分析预测的统计距离分布揭示了不同局部最大值的存在,表明关键残基对的灵活性。在这里,我们研究了残基-残基距离预测提供对蛋白质构象整体洞察的能力。我们将深度学习方法与机械建模相结合,应用于一组实验中显示构象变化的蛋白质。基于能量评分、RMSD 聚类和质心对预测的蛋白质模型进行过滤,每个聚类选择最低能量结构作为质心。通过分析骨架残基扭转分布和侧链取向,将这些模型与实验分子动力学 (MD) 松弛结构进行比较。我们的流水线允许检索实验结构动力学,该动力学由同一序列的不同 X 射线构象以及 MD 模拟中观察到的构象空间来表示。我们展示了实验结构动力学和预测模型整体之间的潜在相关性,证明了当前蛋白质折叠和动力学预测的最新方法的敏感性,并指出了需要改进的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbe/9200820/53417776d493/41598_2022_13714_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验