Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad032.
Recently, extracting inherent biological system information (e.g. cellular networks) from genome-wide expression profiles for developing personalized diagnostic and therapeutic strategies has become increasingly important. However, accurately constructing single-sample networks (SINs) to capture individual characteristics and heterogeneity in disease remains challenging. Here, we propose a sample-specific-weighted correlation network (SWEET) method to model SINs by integrating the genome-wide sample-to-sample correlation (i.e. sample weights) with the differential network between perturbed and aggregate networks. For a group of samples, the genome-wide sample weights can be assessed without prior knowledge of intrinsic subpopulations to address the network edge number bias caused by sample size differences. Compared with the state-of-the-art SIN inference methods, the SWEET SINs in 16 cancers more likely fit the scale-free property, display higher overlap with the human interactomes and perform better in identifying three types of cancer-related genes. Moreover, integrating SWEET SINs with a network proximity measure facilitates characterizing individual features and therapy in diseases, such as somatic mutation, mut-driver and essential genes. Biological experiments further validated two candidate repurposable drugs, albendazole for head and neck squamous cell carcinoma (HNSCC) and lung adenocarcinoma (LUAD) and encorafenib for HNSCC. By applying SWEET, we also identified two possible LUAD subtypes that exhibit distinct clinical features and molecular mechanisms. Overall, the SWEET method complements current SIN inference and analysis methods and presents a view of biological systems at the network level to offer numerous clues for further investigation and clinical translation in network medicine and precision medicine.
最近,从全基因组表达谱中提取内在的生物系统信息(如细胞网络),以开发个性化的诊断和治疗策略变得越来越重要。然而,准确构建单样本网络(SIN)以捕获疾病个体特征和异质性仍然具有挑战性。在这里,我们提出了一种样本特异性加权相关网络(SWEET)方法,通过整合全基因组样本间的相关性(即样本权重)与扰动和聚合网络之间的差异网络,来构建 SIN。对于一组样本,可以在没有内在亚群先验知识的情况下评估全基因组样本权重,以解决由样本大小差异引起的网络边缘数量偏差问题。与最先进的 SIN 推断方法相比,16 种癌症中的 SWEET SIN 更有可能符合无标度特性,与人类相互作用网络的重叠度更高,并且在识别三种癌症相关基因方面表现更好。此外,将 SWEET SIN 与网络接近度度量相结合,有助于描述疾病的个体特征和治疗方法,如体细胞突变、突变驱动和必需基因。生物学实验进一步验证了两种候选可再利用药物,阿苯达唑用于头颈部鳞状细胞癌(HNSCC)和肺腺癌(LUAD),恩考芬尼用于 HNSCC。通过应用 SWEET,我们还鉴定了两种可能的 LUAD 亚型,它们表现出不同的临床特征和分子机制。总的来说,SWEET 方法补充了当前的 SIN 推断和分析方法,并提供了一个网络水平的生物学系统视图,为网络医学和精准医学的进一步研究和临床转化提供了大量线索。