Suppr超能文献

忆阻器网络中的错误学习

Learning by mistakes in memristor networks.

作者信息

Carbajal Juan Pablo, Martin Daniel A, Chialvo Dante R

机构信息

Institute for Energy Technology, University of Applied Sciences of Eastern Switzerland, Oberseestrasse 10, 8640 Rapperswil, Switzerland.

Center for Complex Systems and Brain Sciences (CEMSC3) and Instituto de Ciencias Físicas, CONICET, Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, Campus Miguelete, CP 1650, 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina.

出版信息

Phys Rev E. 2022 May;105(5-1):054306. doi: 10.1103/PhysRevE.105.054306.

Abstract

Recent results revived the interest in the implementation of analog devices able to perform brainlike operations. Here we introduce a training algorithm for a memristor network which is inspired by previous work on biological learning. Robust results are obtained from computer simulations of a network of voltage-controlled memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little peripheral computation overhead.

摘要

近期的研究成果重新唤起了人们对能够执行类脑操作的模拟设备的兴趣。在此,我们介绍一种受先前生物学习研究启发的忆阻器网络训练算法。通过对压控忆阻器件网络进行计算机模拟,获得了可靠的结果。其在硬件中的实现很简单,具有可扩展性,并且几乎不需要外围计算开销。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验