Suppr超能文献

广义指数治愈概率模型的随机期望最大化算法及实证研究

Stochastic EM algorithm for generalized exponential cure rate model and an empirical study.

作者信息

Davies Katherine, Pal Suvra, Siddiqua Joynob A

机构信息

Department of Statistics, University of Manitoba, Winnipeg, Canada.

Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA.

出版信息

J Appl Stat. 2020 Jun 30;48(12):2112-2135. doi: 10.1080/02664763.2020.1786676. eCollection 2021.

Abstract

In this paper, we consider two well-known parametric long-term survival models, namely, the Bernoulli cure rate model and the promotion time (or Poisson) cure rate model. Assuming the long-term survival probability to depend on a set of risk factors, the main contribution is in the development of the stochastic expectation maximization (SEM) algorithm to determine the maximum likelihood estimates of the model parameters. We carry out a detailed simulation study to demonstrate the performance of the proposed SEM algorithm. For this purpose, we assume the lifetimes due to each competing cause to follow a two-parameter generalized exponential distribution. We also compare the results obtained from the SEM algorithm with those obtained from the well-known expectation maximization (EM) algorithm. Furthermore, we investigate a simplified estimation procedure for both SEM and EM algorithms that allow the objective function to be maximized to split into simpler functions with lower dimensions with respect to model parameters. Moreover, we present examples where the EM algorithm fails to converge but the SEM algorithm still works. For illustrative purposes, we analyze a breast cancer survival data. Finally, we use a graphical method to assess the goodness-of-fit of the model with generalized exponential lifetimes.

摘要

在本文中,我们考虑了两种著名的参数化长期生存模型,即伯努利治愈率模型和促进时间(或泊松)治愈率模型。假设长期生存概率取决于一组风险因素,主要贡献在于开发了随机期望最大化(SEM)算法来确定模型参数的最大似然估计。我们进行了详细的模拟研究以证明所提出的SEM算法的性能。为此,我们假设每个竞争原因导致的寿命服从双参数广义指数分布。我们还将从SEM算法获得的结果与从著名的期望最大化(EM)算法获得的结果进行比较。此外,我们研究了一种针对SEM和EM算法的简化估计程序,该程序允许最大化的目标函数相对于模型参数分解为具有更低维度的更简单函数。此外,我们给出了EM算法无法收敛但SEM算法仍然有效的示例。为了说明目的,我们分析了一组乳腺癌生存数据。最后,我们使用一种图形方法来评估具有广义指数寿命的模型的拟合优度。

相似文献

1
Stochastic EM algorithm for generalized exponential cure rate model and an empirical study.
J Appl Stat. 2020 Jun 30;48(12):2112-2135. doi: 10.1080/02664763.2020.1786676. eCollection 2021.
3
Likelihood inference for COM-Poisson cure rate model with interval-censored data and Weibull lifetimes.
Stat Methods Med Res. 2017 Oct;26(5):2093-2113. doi: 10.1177/0962280217708686. Epub 2017 Jun 28.
4
Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes.
Stat Methods Med Res. 2016 Aug;25(4):1535-63. doi: 10.1177/0962280213491641. Epub 2013 Jun 5.
5
On the estimation of interval censored destructive negative binomial cure model.
Stat Med. 2023 Dec 10;42(28):5113-5134. doi: 10.1002/sim.9904. Epub 2023 Sep 14.
6
On the parameter estimation of Box-Cox transformation cure model.
Stat Med. 2023 Jul 10;42(15):2600-2618. doi: 10.1002/sim.9739. Epub 2023 Apr 5.
7
On the use of the modified power series family of distributions in a cure rate model context.
Stat Methods Med Res. 2020 Jul;29(7):1831-1845. doi: 10.1177/0962280219876962. Epub 2019 Sep 27.
8
Proportional hazards under Conway-Maxwell-Poisson cure rate model and associated inference.
Stat Methods Med Res. 2017 Oct;26(5):2055-2077. doi: 10.1177/0962280217708683. Epub 2017 May 19.
9
A New Mixture Model With Cure Rate Applied to Breast Cancer Data.
Biom J. 2024 Sep;66(6):e202300257. doi: 10.1002/bimj.202300257.
10

引用本文的文献

1
A Neural Network Integrated Accelerated Failure Time-Based Mixture Cure Model.
Stat Comput. 2025 Oct;35(5). doi: 10.1007/s11222-025-10674-y. Epub 2025 Jun 22.
2
A New Cure Rate Model with Discrete and Multiple Exposures.
Commun Stat Simul Comput. 2024 Feb 16. doi: 10.1080/03610918.2024.2314664.
3
A semiparametric accelerated failure time-based mixture cure tree.
J Appl Stat. 2024 Oct 23;52(6):1177-1194. doi: 10.1080/02664763.2024.2418476. eCollection 2025.
4
Likelihood Inference for Unified Transformation Cure Model with Interval Censored Data.
Comput Stat. 2025 Jan;40(1):125-151. doi: 10.1007/s00180-024-01480-7. Epub 2024 Mar 25.
5
A New Approach to Modeling the Cure Rate in the Presence of Interval Censored Data.
Comput Stat. 2024 Jul;39(5):2743-2769. doi: 10.1007/s00180-023-01389-7. Epub 2023 Jul 15.
6
A support vector machine-based cure rate model for interval censored data.
Stat Methods Med Res. 2023 Dec;32(12):2405-2422. doi: 10.1177/09622802231210917. Epub 2023 Nov 8.
7
On the integration of decision trees with mixture cure model.
Stat Med. 2023 Oct 15;42(23):4111-4127. doi: 10.1002/sim.9850. Epub 2023 Jul 28.
9
Visual Analysis of Sports Actions Based on Machine Learning and Distributed Expectation Maximization Algorithm.
Comput Intell Neurosci. 2022 Jun 25;2022:5640562. doi: 10.1155/2022/5640562. eCollection 2022.
10
EM Algorithm for Estimating the Parameters of Weibull Competing Risk Model.
Appl Bionics Biomech. 2021 Oct 21;2021:1179856. doi: 10.1155/2021/1179856. eCollection 2021.

本文引用的文献

1
Expectation Maximization Algorithm for Box-Cox Transformation Cure Rate Model and Assessment of Model Misspecification Under Weibull Lifetimes.
IEEE J Biomed Health Inform. 2018 May;22(3):926-934. doi: 10.1109/JBHI.2017.2704920. Epub 2017 May 16.
2
Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes.
Stat Methods Med Res. 2016 Aug;25(4):1535-63. doi: 10.1177/0962280213491641. Epub 2013 Jun 5.
3
Destructive weighted Poisson cure rate models.
Lifetime Data Anal. 2011 Jul;17(3):333-46. doi: 10.1007/s10985-010-9189-2. Epub 2010 Nov 13.
5
Estimation in a Cox proportional hazards cure model.
Biometrics. 2000 Mar;56(1):227-36. doi: 10.1111/j.0006-341x.2000.00227.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验