Pal Suvra
Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019, USA.
Commun Stat Simul Comput. 2024 Feb 16. doi: 10.1080/03610918.2024.2314664.
Cure rate models are mostly used to study data arising from cancer clinical trials. Its use in the context of infectious diseases has not been explored well. In 2008, Tournoud and Ecochard first proposed a mechanistic formulation of cure rate model in the context of infectious diseases with multiple exposures to infection. However, they assumed a simple Poisson distribution to capture the unobserved pathogens at each exposure time. In this paper, we propose a new cure rate model to study infectious diseases with discrete multiple exposures to infection. Our formulation captures both over-dispersion and under-dispersion with respect to the count on pathogens at each time of exposure. We also propose a new estimation method based on the expectation maximization algorithm to calculate the maximum likelihood estimates of the model parameters. We carry out a detailed Monte Carlo simulation study to demonstrate the performance of the proposed model and estimation algorithm. The flexibility of our proposed model also allows us to carry out a model discrimination. For this purpose, we use both likelihood ratio test and information-based criteria. Finally, we illustrate our proposed model using a recently collected data on COVID-19.
治愈率模型主要用于研究癌症临床试验产生的数据。其在传染病背景下的应用尚未得到充分探索。2008年,图尔努德和埃科沙尔首次在多次暴露于感染的传染病背景下提出了治愈率模型的一种机制性表述。然而,他们假设了一个简单的泊松分布来捕捉每次暴露时间未观察到的病原体。在本文中,我们提出了一种新的治愈率模型来研究离散多次暴露于感染的传染病。我们的表述捕捉了每次暴露时间病原体计数方面的过度离散和不足离散情况。我们还提出了一种基于期望最大化算法的新估计方法来计算模型参数的最大似然估计。我们进行了详细的蒙特卡罗模拟研究以证明所提出模型和估计算法的性能。我们所提出模型的灵活性还使我们能够进行模型判别。为此,我们使用似然比检验和基于信息的准则。最后,我们使用最近收集的关于新冠肺炎的数据来说明我们所提出的模型。