Suppr超能文献

协方差可分性下基于混合分布的纵向区间值数据聚类

Clustering of longitudinal interval-valued data via mixture distribution under covariance separability.

作者信息

Park Seongoh, Lim Johan, Choi Hyejeong, Kwak Minjung

机构信息

Department of Statistics, Seoul National University, Seoul, Korea.

Department of Statistics, Yeungnam University, Gyeongsan, Korea.

出版信息

J Appl Stat. 2019 Nov 17;47(10):1739-1756. doi: 10.1080/02664763.2019.1692795. eCollection 2020.

Abstract

We consider the clustering of repeatedly measured 'min-max' type interval-valued data. We read the data as matrix variate data and assume the covariance matrix is separable for the model-based clustering (M-clustering). The use of a separable covariance matrix introduces several advantages in M-clustering, which include fewer samples required for a valid procedure. In addition, the numerical study shows that this structured matrix allows us to find the correct number of clusters more accurately compared to other commonly assumed covariance matrices. We apply the M-clustering with various covariance structures to clustering the longitudinal blood pressure data from the National Heart, Lung, and Blood Institute Growth and Health Study (NGHS).

摘要

我们考虑对重复测量的“最小-最大”型区间值数据进行聚类。我们将数据视为矩阵变量数据,并假设协方差矩阵对于基于模型的聚类(M-聚类)是可分离的。在M-聚类中使用可分离协方差矩阵带来了几个优点,其中包括有效程序所需的样本更少。此外,数值研究表明,与其他通常假设的协方差矩阵相比,这种结构化矩阵使我们能够更准确地找到正确的聚类数量。我们将具有各种协方差结构的M-聚类应用于对美国国立心肺血液研究所生长与健康研究(NGHS)中的纵向血压数据进行聚类。

相似文献

1
Clustering of longitudinal interval-valued data via mixture distribution under covariance separability.
J Appl Stat. 2019 Nov 17;47(10):1739-1756. doi: 10.1080/02664763.2019.1692795. eCollection 2020.
2
Permutation based testing on covariance separability.
Comput Stat. 2019 Jun 1;34(2):865-883. doi: 10.1007/s00180-018-0839-2. Epub 2018 Sep 27.
4
Modal clustering of matrix-variate data.
Adv Data Anal Classif. 2023;17(2):323-345. doi: 10.1007/s11634-022-00501-x. Epub 2022 May 5.
5
A Penalized Matrix Normal Mixture Model for Clustering Matrix Data.
Entropy (Basel). 2021 Sep 26;23(10):1249. doi: 10.3390/e23101249.
6
A comparison of likelihood ratio tests and Rao's score test for three separable covariance matrix structures.
Biom J. 2017 Jan;59(1):192-215. doi: 10.1002/bimj.201600044. Epub 2016 Oct 24.
7
Penalized model-based clustering with unconstrained covariance matrices.
Electron J Stat. 2009 Jan 1;3:1473-1496. doi: 10.1214/09-EJS487.
8
Separability tests for high-dimensional, low sample size multivariate repeated measures data.
J Appl Stat. 2014;41(11):2450-2461. doi: 10.1080/02664763.2014.919251.
9
Parsimonious hidden Markov models for matrix-variate longitudinal data.
Stat Comput. 2022;32(3):53. doi: 10.1007/s11222-022-10107-0. Epub 2022 Jun 15.
10
Diagonal Acceleration for Covariance Matrix Adaptation Evolution Strategies.
Evol Comput. 2020 Fall;28(3):405-435. doi: 10.1162/evco_a_00260. Epub 2019 May 23.

本文引用的文献

1
Permutation based testing on covariance separability.
Comput Stat. 2019 Jun 1;34(2):865-883. doi: 10.1007/s00180-018-0839-2. Epub 2018 Sep 27.
2
Partition-based ultrahigh-dimensional variable screening.
Biometrika. 2017 Nov;104(4):785-800. doi: 10.1093/biomet/asx052. Epub 2017 Oct 9.
3
Bayesian analysis of matrix normal graphical models.
Biometrika. 2009 Dec;96(4):821-834. doi: 10.1093/biomet/asp049. Epub 2009 Oct 9.
4
Model Selection and Estimation in the Matrix Normal Graphical Model.
J Multivar Anal. 2012 May 1;107:119-140. doi: 10.1016/j.jmva.2012.01.005.
6
Application of comparative functional genomics to identify best-fit mouse models to study human cancer.
Nat Genet. 2004 Dec;36(12):1306-11. doi: 10.1038/ng1481. Epub 2004 Nov 21.
8
Obesity and cardiovascular disease risk factors in black and white girls: the NHLBI Growth and Health Study.
Am J Public Health. 1992 Dec;82(12):1613-20. doi: 10.2105/ajph.82.12.1613.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验