Suppr超能文献

协方差可分性下基于混合分布的纵向区间值数据聚类

Clustering of longitudinal interval-valued data via mixture distribution under covariance separability.

作者信息

Park Seongoh, Lim Johan, Choi Hyejeong, Kwak Minjung

机构信息

Department of Statistics, Seoul National University, Seoul, Korea.

Department of Statistics, Yeungnam University, Gyeongsan, Korea.

出版信息

J Appl Stat. 2019 Nov 17;47(10):1739-1756. doi: 10.1080/02664763.2019.1692795. eCollection 2020.

Abstract

We consider the clustering of repeatedly measured 'min-max' type interval-valued data. We read the data as matrix variate data and assume the covariance matrix is separable for the model-based clustering (M-clustering). The use of a separable covariance matrix introduces several advantages in M-clustering, which include fewer samples required for a valid procedure. In addition, the numerical study shows that this structured matrix allows us to find the correct number of clusters more accurately compared to other commonly assumed covariance matrices. We apply the M-clustering with various covariance structures to clustering the longitudinal blood pressure data from the National Heart, Lung, and Blood Institute Growth and Health Study (NGHS).

摘要

我们考虑对重复测量的“最小-最大”型区间值数据进行聚类。我们将数据视为矩阵变量数据,并假设协方差矩阵对于基于模型的聚类(M-聚类)是可分离的。在M-聚类中使用可分离协方差矩阵带来了几个优点,其中包括有效程序所需的样本更少。此外,数值研究表明,与其他通常假设的协方差矩阵相比,这种结构化矩阵使我们能够更准确地找到正确的聚类数量。我们将具有各种协方差结构的M-聚类应用于对美国国立心肺血液研究所生长与健康研究(NGHS)中的纵向血压数据进行聚类。

相似文献

2
Permutation based testing on covariance separability.基于排列的协方差可分性检验。
Comput Stat. 2019 Jun 1;34(2):865-883. doi: 10.1007/s00180-018-0839-2. Epub 2018 Sep 27.
4
Modal clustering of matrix-variate data.矩阵变量数据的模态聚类
Adv Data Anal Classif. 2023;17(2):323-345. doi: 10.1007/s11634-022-00501-x. Epub 2022 May 5.

本文引用的文献

1
Permutation based testing on covariance separability.基于排列的协方差可分性检验。
Comput Stat. 2019 Jun 1;34(2):865-883. doi: 10.1007/s00180-018-0839-2. Epub 2018 Sep 27.
2
Partition-based ultrahigh-dimensional variable screening.基于划分的超高维变量筛选
Biometrika. 2017 Nov;104(4):785-800. doi: 10.1093/biomet/asx052. Epub 2017 Oct 9.
3
Bayesian analysis of matrix normal graphical models.矩阵正态图形模型的贝叶斯分析。
Biometrika. 2009 Dec;96(4):821-834. doi: 10.1093/biomet/asp049. Epub 2009 Oct 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验