Suppr超能文献

基于逻辑回归分析构建预测血脂异常的列线图。

Nomogram construction to predict dyslipidemia based on a logistic regression analysis.

作者信息

Seo Ju-Hyun, Kim Hyun-Ji, Lee Jea-Young

机构信息

Department of Statistics, Yeungnam University, Gyeongsan, Korea.

出版信息

J Appl Stat. 2019 Sep 4;47(5):914-926. doi: 10.1080/02664763.2019.1660760. eCollection 2020.

Abstract

Dyslipidemia is a chronic disease requiring continuous management and is a well-known risk factor for cardiovascular diseases as well as hypertension and diabetes. However, no studies have so far visualized and predicted the probability of dyslipidemia. Hence, this study proposes a nomogram based on a logistic regression model that can visualize its risk factors and predict the probability of developing dyslipidemia. Twelve risk factors for dyslipidemia are identified through a chi-squared test. We then conduct a logistic regression analysis with two interaction variables to obtain a model and build a nomogram for dyslipidemia. Finally, we verify the constructed nomogram using a receiver operation characteristic curve and calibration plot.

摘要

血脂异常是一种需要持续管理的慢性疾病,是心血管疾病以及高血压和糖尿病的众所周知的危险因素。然而,迄今为止尚无研究对血脂异常的可能性进行可视化和预测。因此,本研究提出了一种基于逻辑回归模型的列线图,该列线图可以可视化其危险因素并预测发生血脂异常的可能性。通过卡方检验确定了十二个血脂异常危险因素。然后,我们对两个交互变量进行逻辑回归分析以获得一个模型,并构建血脂异常的列线图。最后,我们使用受试者工作特征曲线和校准图验证构建的列线图。

相似文献

引用本文的文献

本文引用的文献

1
2018 Guidelines for the Management of Dyslipidemia in Korea.《2018年韩国血脂异常管理指南》
J Lipid Atheroscler. 2019 Sep;8(2):78-131. doi: 10.12997/jla.2019.8.2.78. Epub 2019 Aug 7.
2
Prevalence and Risk Factors Associated with Dyslipidemia in Chongqing, China.中国重庆血脂异常的患病率及相关危险因素
Int J Environ Res Public Health. 2015 Oct 26;12(10):13455-65. doi: 10.3390/ijerph121013455.
4
Risk factors for development of diabetes mellitus, hypertension and dyslipidemia.糖尿病、高血压和血脂异常的发病危险因素。
Diabetes Res Clin Pract. 2011 Oct;94(1):e15-8. doi: 10.1016/j.diabres.2011.07.006. Epub 2011 Jul 30.
6
How to build and interpret a nomogram for cancer prognosis.如何构建和解读癌症预后列线图。
J Clin Oncol. 2008 Mar 10;26(8):1364-70. doi: 10.1200/JCO.2007.12.9791.
7
Understanding diagnostic tests 3: Receiver operating characteristic curves.理解诊断测试3:受试者工作特征曲线。
Acta Paediatr. 2007 May;96(5):644-7. doi: 10.1111/j.1651-2227.2006.00178.x. Epub 2007 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验