Suppr超能文献

使用自助法控制模型选择信息准则的错误概率。

Controlling the error probabilities of model selection information criteria using bootstrapping.

作者信息

Cullan Michael, Lidgard Scott, Sterner Beckett

机构信息

School of Mathematics and Statistical Sciences, Arizona State University, Phoenix, AZ, USA.

Field Museum of Natural History, Chicago, IL, USA.

出版信息

J Appl Stat. 2019 Dec 18;47(13-15):2565-2581. doi: 10.1080/02664763.2019.1701636. eCollection 2020.

Abstract

The Akaike Information Criterion (AIC) and related information criteria are powerful and increasingly popular tools for comparing multiple, non-nested models without the specification of a null model. However, existing procedures for information-theoretic model selection do not provide explicit and uniform control over error rates for the choice between models, a key feature of classical hypothesis testing. We show how to extend notions of Type-I and Type-II error to more than two models without requiring a null. We then present the Error Control for Information Criteria (ECIC) method, a bootstrap approach to controlling Type-I error using Difference of Goodness of Fit (DGOF) distributions. We apply ECIC to empirical and simulated data in time series and regression contexts to illustrate its value for parametric Neyman-Pearson classification. An R package implementing the bootstrap method is publicly available.

摘要

赤池信息准则(AIC)及相关信息准则是功能强大且日益流行的工具,用于比较多个非嵌套模型,而无需指定零模型。然而,现有的信息论模型选择程序并未像经典假设检验的关键特征那样,对模型间选择的错误率提供明确且统一的控制。我们展示了如何在无需零模型的情况下,将I型和II型错误的概念扩展到两个以上的模型。然后,我们提出了信息准则的错误控制(ECIC)方法,这是一种使用拟合优度差异(DGOF)分布来控制I型错误的自助法。我们将ECIC应用于时间序列和回归背景下的实证数据和模拟数据,以说明其在参数奈曼-皮尔逊分类中的价值。一个实现该自助法的R包已公开发布。

相似文献

9
Testing goodness of fit of parametric models for censored data.检验删失数据参数模型的拟合优度。
Stat Med. 2012 Sep 20;31(21):2374-85. doi: 10.1002/sim.5368. Epub 2012 Jun 19.
10
Testing Process Factor Analysis Models Using the Parametric Bootstrap.使用参数 bootstrap 检验过程因子分析模型。
Multivariate Behav Res. 2018 Mar-Apr;53(2):219-230. doi: 10.1080/00273171.2017.1415123. Epub 2018 Jan 11.

引用本文的文献

1
Editorial to special issue V WCDANM 2018.2018年世界慢性疾病与营养大会特刊社论
J Appl Stat. 2020 Sep 14;47(13-15):2289-2298. doi: 10.1080/02664763.2020.1818489. eCollection 2020.

本文引用的文献

5
Estimation and Accuracy after Model Selection.模型选择后的估计与准确性。
J Am Stat Assoc. 2014 Jul 1;109(507):991-1007. doi: 10.1080/01621459.2013.823775.
10
AIC model selection using Akaike weights.使用赤池权重进行AIC模型选择。
Psychon Bull Rev. 2004 Feb;11(1):192-6. doi: 10.3758/bf03206482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验