Suppr超能文献

LASSO 类型惩罚样条回归用于二项数据。

LASSO type penalized spline regression for binary data.

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.

Department of Medicine, McGill University, and Respiratory Epidemiology & Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, Canada.

出版信息

BMC Med Res Methodol. 2021 Apr 24;21(1):83. doi: 10.1186/s12874-021-01234-9.

Abstract

BACKGROUND

Generalized linear mixed models (GLMMs), typically used for analyzing correlated data, can also be used for smoothing by considering the knot coefficients from a regression spline as random effects. The resulting models are called semiparametric mixed models (SPMMs). Allowing the random knot coefficients to follow a normal distribution with mean zero and a constant variance is equivalent to using a penalized spline with a ridge regression type penalty. We introduce the least absolute shrinkage and selection operator (LASSO) type penalty in the SPMM setting by considering the coefficients at the knots to follow a Laplace double exponential distribution with mean zero.

METHODS

We adopt a Bayesian approach and use the Markov Chain Monte Carlo (MCMC) algorithm for model fitting. Through simulations, we compare the performance of curve fitting in a SPMM using a LASSO type penalty to that of using ridge penalty for binary data. We apply the proposed method to obtain smooth curves from data on the relationship between the amount of pack years of smoking and the risk of developing chronic obstructive pulmonary disease (COPD).

RESULTS

The LASSO penalty performs as well as ridge penalty for simple shapes of association and outperforms the ridge penalty when the shape of association is complex or linear.

CONCLUSION

We demonstrated that LASSO penalty captured complex dose-response association better than the Ridge penalty in a SPMM.

摘要

背景

广义线性混合模型(GLMM)通常用于分析相关数据,也可以通过将回归样条的结点系数视为随机效应来进行平滑处理。由此产生的模型称为半参数混合模型(SPMM)。允许随机结点系数服从均值为零且方差为常数的正态分布,相当于使用具有岭回归类型惩罚的惩罚样条。我们通过考虑结点处的系数服从均值为零的拉普拉斯双指数分布,在 SPMM 中引入最小绝对收缩和选择算子(LASSO)类型的惩罚。

方法

我们采用贝叶斯方法并使用马尔可夫链蒙特卡罗(MCMC)算法进行模型拟合。通过模拟,我们比较了在二进制数据中使用 LASSO 类型惩罚的 SPMM 中的曲线拟合性能与使用岭惩罚的性能。我们应用所提出的方法从吸烟包年数与慢性阻塞性肺疾病(COPD)发病风险之间关系的数据中获取平滑曲线。

结果

对于简单的关联形状,LASSO 惩罚与岭惩罚的性能一样好,而当关联形状复杂或线性时,LASSO 惩罚的性能优于岭惩罚。

结论

我们证明了在 SPMM 中,LASSO 惩罚比岭惩罚更能捕捉复杂的剂量-反应关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc0d/8070328/361dcb59cf7c/12874_2021_1234_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验