Suppr超能文献

开发和验证一种深度学习模型以预测早产儿视网膜病变的发生和严重程度。

Development and Validation of a Deep Learning Model to Predict the Occurrence and Severity of Retinopathy of Prematurity.

机构信息

Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

Department of Ophthalmology, General Hospital of Central Theater Command, Wuhan, China.

出版信息

JAMA Netw Open. 2022 Jun 1;5(6):e2217447. doi: 10.1001/jamanetworkopen.2022.17447.

Abstract

IMPORTANCE

Retinopathy of prematurity (ROP) is the leading cause of childhood blindness worldwide. Prediction of ROP before onset holds great promise for reducing the risk of blindness.

OBJECTIVE

To develop and validate a deep learning (DL) system to predict the occurrence and severity of ROP before 45 weeks' postmenstrual age.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective prognostic study included 7033 retinal photographs of 725 infants in the training set and 763 retinal photographs of 90 infants in the external validation set, along with 46 characteristics for each infant. All images of both eyes from the same infant taken at the first screening were labeled according to the final diagnosis made between the first screening and 45 weeks' postmenstrual age. The DL system was developed using retinal photographs from the first ROP screening and clinical characteristics before or at the first screening in infants born between June 3, 2017, and August 28, 2019.

EXPOSURES

Two models were specifically designed for predictions of the occurrence (occurrence network [OC-Net]) and severity (severity network [SE-Net]) of ROP. Five-fold cross-validation was applied for internal validation.

MAIN OUTCOMES AND MEASURES

Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity to evaluate the performance in ROP prediction.

RESULTS

This study included 815 infants (450 [55.2%] boys) with mean birth weight of 1.91 kg (95% CI, 1.87-1.95 kg) and mean gestational age of 33.1 weeks (95% CI, 32.9-33.3 weeks). In internal validation, mean AUC, accuracy, sensitivity, and specificity were 0.90 (95% CI, 0.88-0.92), 52.8% (95% CI, 49.2%-56.4%), 100% (95% CI, 97.4%-100%), and 37.8% (95% CI, 33.7%-42.1%), respectively, for OC-Net to predict ROP occurrence and 0.87 (95% CI, 0.82-0.91), 68.0% (95% CI, 61.2%-74.8%), 100% (95% CI, 93.2%-100%), and 46.6% (95% CI, 37.3%-56.0%), respectively, for SE-Net to predict severe ROP. In external validation, the AUC, accuracy, sensitivity, and specificity were 0.94, 33.3%, 100%, and 7.5%, respectively, for OC-Net, and 0.88, 56.0%, 100%, and 35.3%, respectively, for SE-Net.

CONCLUSIONS AND RELEVANCE

In this study, the DL system achieved promising accuracy in ROP prediction. This DL system is potentially useful in identifying infants with high risk of developing ROP.

摘要

重要性

早产儿视网膜病变(ROP)是全球儿童失明的主要原因。在发病前预测 ROP 具有很大的降低失明风险的潜力。

目的

开发和验证一种深度学习(DL)系统,以便在 45 周龄前预测 ROP 的发生和严重程度。

设计、设置和参与者:这项回顾性预测研究包括训练集中的 7033 张 725 名婴儿的视网膜照片和外部验证集中的 763 张 90 名婴儿的视网膜照片,以及每个婴儿的 46 个特征。同一婴儿的双眼所有图像均取自第一次筛查,并根据第一次筛查至 45 周龄之间的最终诊断进行标记。DL 系统是使用 2017 年 6 月 3 日至 2019 年 8 月 28 日出生的婴儿首次 ROP 筛查时的视网膜照片和临床特征开发的。

暴露因素

专门设计了两个模型来预测 ROP 的发生(发生网络[OC-Net])和严重程度(严重网络[SE-Net])。采用五重交叉验证进行内部验证。

主要结果和措施

评估 ROP 预测性能的接收者操作特征曲线下面积(AUC)、准确性、敏感性和特异性。

结果

这项研究包括 815 名婴儿(450 名[55.2%]男孩),平均出生体重为 1.91 千克(95%置信区间,1.87-1.95 千克),平均胎龄为 33.1 周(95%置信区间,32.9-33.3 周)。在内部验证中,OC-Net 预测 ROP 发生的平均 AUC、准确性、敏感性和特异性分别为 0.90(95%置信区间,0.88-0.92)、52.8%(95%置信区间,49.2%-56.4%)、100%(95%置信区间,97.4%-100%)和 37.8%(95%置信区间,33.7%-42.1%),SE-Net 预测严重 ROP 的平均 AUC、准确性、敏感性和特异性分别为 0.87(95%置信区间,0.82-0.91)、68.0%(95%置信区间,61.2%-74.8%)、100%(95%置信区间,93.2%-100%)和 46.6%(95%置信区间,37.3%-56.0%)。在外部验证中,OC-Net 的 AUC、准确性、敏感性和特异性分别为 0.94、33.3%、100%和 7.5%,SE-Net 分别为 0.88、56.0%、100%和 35.3%。

结论和相关性

在这项研究中,DL 系统在 ROP 预测方面取得了有希望的准确性。该 DL 系统在识别有发生 ROP 高风险的婴儿方面具有潜在的用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9473/10881218/834359b540b5/jamanetwopen-e2217447-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验