Hong Mihee, Kim Inhwan, Cho Jin-Hyoung, Kang Kyung-Hwa, Kim Minji, Kim Su-Jung, Kim Yoon-Ji, Sung Sang-Jin, Kim Young Ho, Lim Sung-Hoon, Kim Namkug, Baek Seung-Hak
Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea.
Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu, Korea.
Korean J Orthod. 2022 Jul 25;52(4):287-297. doi: 10.4041/kjod21.248. Epub 2022 Jun 20.
To investigate the pattern of accuracy change in artificial intelligence-assisted landmark identification (LI) using a convolutional neural network (CNN) algorithm in serial lateral cephalograms (Lat-cephs) of Class III (C-III) patients who underwent two-jaw orthognathic surgery.
A total of 3,188 Lat-cephs of C-III patients were allocated into the training and validation sets (3,004 Lat-cephs of 751 patients) and test set (184 Lat-cephs of 46 patients; subdivided into the genioplasty and non-genioplasty groups, n = 23 per group) for LI. Each C-III patient in the test set had four Lat-cephs: initial (T0), pre-surgery (T1, presence of orthodontic brackets [OBs]), post-surgery (T2, presence of OBs and surgical plates and screws [S-PS]), and debonding (T3, presence of S-PS and fixed retainers [FR]). After mean errors of 20 landmarks between human gold standard and the CNN model were calculated, statistical analysis was performed.
The total mean error was 1.17 mm without significant difference among the four time-points (T0, 1.20 mm; T1, 1.14 mm; T2, 1.18 mm; T3, 1.15 mm). In comparison of two time-points ([T0, T1] vs. [T2, T3]), ANS, A point, and B point showed an increase in error ( < 0.01, 0.05, 0.01, respectively), while Mx6D and Md6D showeda decrease in error (all < 0.01). No difference in errors existed at B point, Pogonion, Menton, Md1C, and Md1R between the genioplasty and non-genioplasty groups.
The CNN model can be used for LI in serial Lat-cephs despite the presence of OB, S-PS, FR, genioplasty, and bone remodeling.
研究在接受双颌正颌手术的III类(C-III)患者的系列头颅侧位片(Lat-cephs)中,使用卷积神经网络(CNN)算法进行人工智能辅助标志点识别(LI)时的准确性变化模式。
总共3188张C-III患者的Lat-cephs被分为训练集和验证集(751例患者的3004张Lat-cephs)以及测试集(46例患者的184张Lat-cephs;再细分为颏成形术组和非颏成形术组,每组n = 23)用于LI。测试集中的每位C-III患者有四张Lat-cephs:初始(T0)、术前(T1,存在正畸托槽[OBs])、术后(T2,存在OBs以及手术钢板和螺钉[S-PS])和去粘结(T3,存在S-PS和固定保持器[FR])。在计算人类金标准与CNN模型之间20个标志点的平均误差后,进行统计分析。
总平均误差为1.17毫米,在四个时间点(T0,1.20毫米;T1,1.14毫米;T2,1.18毫米;T3,1.15毫米)之间无显著差异。在比较两个时间点([T0,T1]与[T2,T3])时,前鼻棘(ANS)、A点和B点的误差增加(分别为<0.01、0.05、0.01),而Mx6D和Md6D的误差减小(均<0.01)。颏成形术组和非颏成形术组在B点、颏前点、颏下点、下颌第一磨牙近中颊尖(Md1C)和下颌第一磨牙近中舌尖(Md1R)的误差无差异。
尽管存在OB、S-PS、FR、颏成形术和骨重塑,CNN模型仍可用于系列Lat-cephs的LI。