文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

接受正畸治疗和双颌正颌手术的III类患者系列头颅侧位片人工智能辅助标志点识别的准确性

Accuracy of artificial intelligence-assisted landmark identification in serial lateral cephalograms of Class III patients who underwent orthodontic treatment and two-jaw orthognathic surgery.

作者信息

Hong Mihee, Kim Inhwan, Cho Jin-Hyoung, Kang Kyung-Hwa, Kim Minji, Kim Su-Jung, Kim Yoon-Ji, Sung Sang-Jin, Kim Young Ho, Lim Sung-Hoon, Kim Namkug, Baek Seung-Hak

机构信息

Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea.

Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu, Korea.

出版信息

Korean J Orthod. 2022 Jul 25;52(4):287-297. doi: 10.4041/kjod21.248. Epub 2022 Jun 20.


DOI:10.4041/kjod21.248
PMID:35719042
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9314217/
Abstract

OBJECTIVE: To investigate the pattern of accuracy change in artificial intelligence-assisted landmark identification (LI) using a convolutional neural network (CNN) algorithm in serial lateral cephalograms (Lat-cephs) of Class III (C-III) patients who underwent two-jaw orthognathic surgery. METHODS: A total of 3,188 Lat-cephs of C-III patients were allocated into the training and validation sets (3,004 Lat-cephs of 751 patients) and test set (184 Lat-cephs of 46 patients; subdivided into the genioplasty and non-genioplasty groups, n = 23 per group) for LI. Each C-III patient in the test set had four Lat-cephs: initial (T0), pre-surgery (T1, presence of orthodontic brackets [OBs]), post-surgery (T2, presence of OBs and surgical plates and screws [S-PS]), and debonding (T3, presence of S-PS and fixed retainers [FR]). After mean errors of 20 landmarks between human gold standard and the CNN model were calculated, statistical analysis was performed. RESULTS: The total mean error was 1.17 mm without significant difference among the four time-points (T0, 1.20 mm; T1, 1.14 mm; T2, 1.18 mm; T3, 1.15 mm). In comparison of two time-points ([T0, T1] vs. [T2, T3]), ANS, A point, and B point showed an increase in error ( < 0.01, 0.05, 0.01, respectively), while Mx6D and Md6D showeda decrease in error (all < 0.01). No difference in errors existed at B point, Pogonion, Menton, Md1C, and Md1R between the genioplasty and non-genioplasty groups. CONCLUSIONS: The CNN model can be used for LI in serial Lat-cephs despite the presence of OB, S-PS, FR, genioplasty, and bone remodeling.

摘要

目的:研究在接受双颌正颌手术的III类(C-III)患者的系列头颅侧位片(Lat-cephs)中,使用卷积神经网络(CNN)算法进行人工智能辅助标志点识别(LI)时的准确性变化模式。 方法:总共3188张C-III患者的Lat-cephs被分为训练集和验证集(751例患者的3004张Lat-cephs)以及测试集(46例患者的184张Lat-cephs;再细分为颏成形术组和非颏成形术组,每组n = 23)用于LI。测试集中的每位C-III患者有四张Lat-cephs:初始(T0)、术前(T1,存在正畸托槽[OBs])、术后(T2,存在OBs以及手术钢板和螺钉[S-PS])和去粘结(T3,存在S-PS和固定保持器[FR])。在计算人类金标准与CNN模型之间20个标志点的平均误差后,进行统计分析。 结果:总平均误差为1.17毫米,在四个时间点(T0,1.20毫米;T1,1.14毫米;T2,1.18毫米;T3,1.15毫米)之间无显著差异。在比较两个时间点([T0,T1]与[T2,T3])时,前鼻棘(ANS)、A点和B点的误差增加(分别为<0.01、0.05、0.01),而Mx6D和Md6D的误差减小(均<0.01)。颏成形术组和非颏成形术组在B点、颏前点、颏下点、下颌第一磨牙近中颊尖(Md1C)和下颌第一磨牙近中舌尖(Md1R)的误差无差异。 结论:尽管存在OB、S-PS、FR、颏成形术和骨重塑,CNN模型仍可用于系列Lat-cephs的LI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c51/9314217/5dee95529f2e/kjod-52-4-287-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c51/9314217/6db068b18f31/kjod-52-4-287-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c51/9314217/137235b70360/kjod-52-4-287-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c51/9314217/5dee95529f2e/kjod-52-4-287-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c51/9314217/6db068b18f31/kjod-52-4-287-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c51/9314217/137235b70360/kjod-52-4-287-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c51/9314217/5dee95529f2e/kjod-52-4-287-f3.jpg

相似文献

[1]
Accuracy of artificial intelligence-assisted landmark identification in serial lateral cephalograms of Class III patients who underwent orthodontic treatment and two-jaw orthognathic surgery.

Korean J Orthod. 2022-7-25

[2]
Orthognathic surgical planning using graph CNN with dual embedding module: External validations with multi-hospital datasets.

Comput Methods Programs Biomed. 2023-12

[3]
Accuracy of artificial intelligence-assisted growth prediction in skeletal Class I preadolescent patients using serial lateral cephalograms for a 2-year growth interval.

Orthod Craniofac Res. 2024-8

[4]
Soft tissue profile changes after setback genioplasty in orthognathic surgery patients.

J Craniomaxillofac Surg. 2013-2-8

[5]
Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study.

Korean J Orthod. 2024-1-25

[6]
Is There Any Difference Between Gonial Angle Values Measured on Digital Lateral Cephalograms and Orthopantomograms?

Turk J Orthod. 2020-5-20

[7]
Patient's Satisfaction in Skeletal Class III Cases Treated With Two-Jaw Surgery Using Orthognathic Quality of Life Questionnaire: Conventional Three-Stage Method Versus Surgery-First Approach.

J Craniofac Surg. 2015-10

[8]
Maxillary incisor inclination of skeletal Class III patients treated with extraction of the upper first premolars and two-jaw surgery: conventional orthognathic surgery vs surgery-first approach.

Angle Orthod. 2014-7

[9]
Alteration of masticatory electromyographic activity and stability of orthognathic surgery in patients with skeletal class III malocclusion.

J Oral Maxillofac Surg. 2013-7

[10]
Anchor Plate Efficiency in Postoperative Orthodontic Treatment Following Orthognathic Surgery via Minimal Presurgical Orthodontic Treatment.

Maxillofac Plast Reconstr Surg. 2014-7

引用本文的文献

[1]
Integration of artificial intelligence in orthodontic imaging: A bibliometric analysis of research trends and applications.

Imaging Sci Dent. 2025-6

[2]
Automated orthodontic diagnosis via self-supervised learning and multi-attribute classification using lateral cephalograms.

Biomed Eng Online. 2025-2-4

[3]
Automated Measurements of Tooth Size and Arch Widths on Cone-Beam Computerized Tomography and Scan Images of Plaster Dental Models.

Bioengineering (Basel). 2024-12-29

[4]
Applications of Artificial Intelligence in Dental Medicine: A Critical Review.

Int Dent J. 2025-4

[5]
The current landscape of artificial intelligence in oral and maxillofacial surgery- a narrative review.

Oral Maxillofac Surg. 2025-1-17

[6]
Artificial Intelligence in Dentistry: A Descriptive Review.

Bioengineering (Basel). 2024-12-13

[7]
The Future of Orthodontics: Deep Learning Technologies.

Cureus. 2024-6-10

[8]
AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning-A Comprehensive Review.

J Clin Med. 2024-1-7

[9]
Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study.

Korean J Orthod. 2024-1-25

[10]
Application of Artificial Intelligence in Orthodontics: Current State and Future Perspectives.

Healthcare (Basel). 2023-10-18

本文引用的文献

[1]
Accuracy of automated identification of lateral cephalometric landmarks using cascade convolutional neural networks on lateral cephalograms from nationwide multi-centres.

Orthod Craniofac Res. 2021-12

[2]
Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - A systematic review.

J Dent Sci. 2021-1

[3]
Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks.

BMC Oral Health. 2020-10-7

[4]
Automated identification of cephalometric landmarks:

Angle Orthod. 2019-7-22

[5]
Focal Loss for Dense Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2020-2

[6]
Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach.

Sci Rep. 2018-1-11

[7]
Stability of Vertical, Horizontal and Angular Parameters Following Superior Repositioning of Maxilla by Le Fort I Osteotomy: A Cephalometric Study.

J Clin Diagn Res. 2017-1

[8]
Fully automated quantitative cephalometry using convolutional neural networks.

J Med Imaging (Bellingham). 2017-1

[9]
Five-year investigation of a large orthodontic patient population at a dental hospital in South Korea.

Korean J Orthod. 2016-5

[10]
A benchmark for comparison of dental radiography analysis algorithms.

Med Image Anal. 2016-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索