Hong Mihee, Kim Inhwan, Cho Jin-Hyoung, Kang Kyung-Hwa, Kim Minji, Kim Su-Jung, Kim Yoon-Ji, Sung Sang-Jin, Kim Young Ho, Lim Sung-Hoon, Kim Namkug, Baek Seung-Hak
Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea.
Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu, Korea.
Korean J Orthod. 2022 Jul 25;52(4):287-297. doi: 10.4041/kjod21.248. Epub 2022 Jun 20.
OBJECTIVE: To investigate the pattern of accuracy change in artificial intelligence-assisted landmark identification (LI) using a convolutional neural network (CNN) algorithm in serial lateral cephalograms (Lat-cephs) of Class III (C-III) patients who underwent two-jaw orthognathic surgery. METHODS: A total of 3,188 Lat-cephs of C-III patients were allocated into the training and validation sets (3,004 Lat-cephs of 751 patients) and test set (184 Lat-cephs of 46 patients; subdivided into the genioplasty and non-genioplasty groups, n = 23 per group) for LI. Each C-III patient in the test set had four Lat-cephs: initial (T0), pre-surgery (T1, presence of orthodontic brackets [OBs]), post-surgery (T2, presence of OBs and surgical plates and screws [S-PS]), and debonding (T3, presence of S-PS and fixed retainers [FR]). After mean errors of 20 landmarks between human gold standard and the CNN model were calculated, statistical analysis was performed. RESULTS: The total mean error was 1.17 mm without significant difference among the four time-points (T0, 1.20 mm; T1, 1.14 mm; T2, 1.18 mm; T3, 1.15 mm). In comparison of two time-points ([T0, T1] vs. [T2, T3]), ANS, A point, and B point showed an increase in error ( < 0.01, 0.05, 0.01, respectively), while Mx6D and Md6D showeda decrease in error (all < 0.01). No difference in errors existed at B point, Pogonion, Menton, Md1C, and Md1R between the genioplasty and non-genioplasty groups. CONCLUSIONS: The CNN model can be used for LI in serial Lat-cephs despite the presence of OB, S-PS, FR, genioplasty, and bone remodeling.
目的:研究在接受双颌正颌手术的III类(C-III)患者的系列头颅侧位片(Lat-cephs)中,使用卷积神经网络(CNN)算法进行人工智能辅助标志点识别(LI)时的准确性变化模式。 方法:总共3188张C-III患者的Lat-cephs被分为训练集和验证集(751例患者的3004张Lat-cephs)以及测试集(46例患者的184张Lat-cephs;再细分为颏成形术组和非颏成形术组,每组n = 23)用于LI。测试集中的每位C-III患者有四张Lat-cephs:初始(T0)、术前(T1,存在正畸托槽[OBs])、术后(T2,存在OBs以及手术钢板和螺钉[S-PS])和去粘结(T3,存在S-PS和固定保持器[FR])。在计算人类金标准与CNN模型之间20个标志点的平均误差后,进行统计分析。 结果:总平均误差为1.17毫米,在四个时间点(T0,1.20毫米;T1,1.14毫米;T2,1.18毫米;T3,1.15毫米)之间无显著差异。在比较两个时间点([T0,T1]与[T2,T3])时,前鼻棘(ANS)、A点和B点的误差增加(分别为<0.01、0.05、0.01),而Mx6D和Md6D的误差减小(均<0.01)。颏成形术组和非颏成形术组在B点、颏前点、颏下点、下颌第一磨牙近中颊尖(Md1C)和下颌第一磨牙近中舌尖(Md1R)的误差无差异。 结论:尽管存在OB、S-PS、FR、颏成形术和骨重塑,CNN模型仍可用于系列Lat-cephs的LI。
Comput Methods Programs Biomed. 2023-12
J Craniomaxillofac Surg. 2013-2-8
Maxillofac Plast Reconstr Surg. 2014-7
Bioengineering (Basel). 2024-12-29
Oral Maxillofac Surg. 2025-1-17
Bioengineering (Basel). 2024-12-13
Cureus. 2024-6-10
Healthcare (Basel). 2023-10-18
Angle Orthod. 2019-7-22
IEEE Trans Pattern Anal Mach Intell. 2020-2
J Med Imaging (Bellingham). 2017-1
Med Image Anal. 2016-2-28