Suppr超能文献

二维生物图像中的地标检测用于几何形态测量学:一种基于树的多分辨率方法。

Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach.

机构信息

Montefiore Institute, Department of Electrical engineering and Computer Science., University of Liège, Liège, 4000, Belgium.

Laboratory for Organogenesis and Regeneration, GIGA-Research, University of Liège, Liège, 4000, Belgium.

出版信息

Sci Rep. 2018 Jan 11;8(1):538. doi: 10.1038/s41598-017-18993-5.

Abstract

The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research.

摘要

在许多研究领域中,生物图像中的解剖学地标检测是几何形态测量学研究的必要但繁琐的步骤。我们提出了多种基于树的多分辨率方法的变体,以加快生物图像中地标检测的速度。我们在三个不同的数据集(头影测量、斑马鱼和果蝇图像)上对我们的方法变体进行了广泛的评估。我们确定了关键的方法参数(特别是多分辨率),并根据人体地面真实数据和现有方法报告了结果。我们的方法在具有通用性和快速性的同时,实现了与现有方法相当的识别性能。该算法已集成到开源 Cytomine 软件中,我们提供了参数配置指南,以便最终用户能够轻松地利用这些算法。最后,通过 Cytomine 服务器提供了数据集,以促进未来的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d969/5765108/4ed9cc45b717/41598_2017_18993_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验