The Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
Biometrics. 2023 Sep;79(3):2417-2429. doi: 10.1111/biom.13708. Epub 2022 Jul 5.
A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.
医学影像学研究的一个核心挑战是提取能够描述疾病病理或结果的生物标志物。现代自动化方法在高分辨率、高质量的磁共振图像方面取得了巨大成功。然而,这些方法可能不适用于在磁场强度较低的磁共振成像 (MRI) 扫描仪上获得的低分辨率图像。在资源较少的环境中,低场扫描仪更为常见,而且缺乏能够手动解读 MRI 扫描的放射科医生,因此开发能够增强或替代手动解读、同时适应低图像质量的自动化方法至关重要。我们提出了一种完全自动化的框架,用于将放射学诊断标准转化为基于图像的生物标志物,该框架的灵感来自一个项目,该项目使用低场 0.35T MRI 对患有脑疟疾 (CM) 的儿童进行成像。我们整合了多图谱标签融合,该融合利用来自另一个样本的高分辨率图像作为先验空间信息,以及基于图像强度的参数高斯隐马尔可夫模型,以创建一种用于确定脑室脑脊液体积的稳健方法。我们还提出了归一化图像强度和纹理测量方法,以确定灰质与白质组织分化和脑回消失的丧失。这些综合生物标志物在确定因 CM 引起的严重脑肿胀方面具有出色的分类性能。