Suppr超能文献

MRI 图像中多形性胶质母细胞瘤的自动分割:使用 Deeplabv3+ 预训练的 Resnet18 权重。

Automatic segmentation of glioblastoma multiform brain tumor in MRI images: Using Deeplabv3+ with pre-trained Resnet18 weights.

机构信息

Nuclear Engineering Department, Shiraz University, Shiraz, Iran.

Nuclear Engineering Department, Shiraz University, Shiraz, Iran; Radiation Research Center, Shiraz University, Shiraz, Iran.

出版信息

Phys Med. 2022 Aug;100:51-63. doi: 10.1016/j.ejmp.2022.06.007. Epub 2022 Jun 19.

Abstract

PURPOSE

To assess the effectiveness of deep learning algorithms in automated segmentation of magnetic resonance brain images for determining the enhanced tumor, the peri-tumoral edema, the necrotic/ non-enhancing tumor, and Normal tissue volumes.

METHODS AND MATERIALS

A new deep neural network algorithm, Deep-Net, was developed for semantic segmentation of the glioblastoma tumors in MR images, using the Deeplabv3+ architecture, and the pre-trained Resnet18 initial weights. The MR image Dataset used for training the network was taken from the BraTS 2020 training set, with the ground truth labels for different tumor subregions manually drawn by a group of expert neuroradiologists. In this work, two multi-modal MRI scans, i.e., Tce and FLAIR of 293 patients with high-grade glioma (HGG), were used for deep network training (Deep-Net). The performance of the network was assessed for different hyper-parameters, to obtain the optimum set of parameters. The similarity scores were used for the evaluation of the optimized network.

RESULTS

According to the results of this study, epoch #37 is the optimum epoch giving the best global accuracy (97.53%), and loss function (0.14). The Deep-Net sensitivity in the delineation of the enhanced tumor is more than 90%.

CONCLUSIONS

The results indicate that the Deep-Net was able to segment GBM tumors with high accuracy.

摘要

目的

评估深度学习算法在磁共振脑图像自动分割中的有效性,以确定增强肿瘤、肿瘤周围水肿、坏死/非增强肿瘤和正常组织体积。

方法和材料

开发了一种新的深度学习算法 Deep-Net,用于磁共振图像中胶质母细胞瘤肿瘤的语义分割,使用 Deeplabv3+ 架构和预先训练的 Resnet18 初始权重。用于训练网络的磁共振图像数据集取自 BraTS 2020 训练集,不同肿瘤亚区的地面真实标签由一组专家神经放射科医生手动绘制。在这项工作中,使用 293 名高级别胶质瘤(HGG)患者的两种多模态 MRI 扫描,即 Tce 和 FLAIR,用于深度网络训练(Deep-Net)。评估了网络的不同超参数,以获得最佳参数集。使用相似性评分评估优化后的网络。

结果

根据这项研究的结果,第 37 个时期是最佳时期,可获得最佳全局准确性(97.53%)和损失函数(0.14)。Deep-Net 在勾画增强肿瘤方面的灵敏度超过 90%。

结论

结果表明,Deep-Net 能够非常准确地分割 GBM 肿瘤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验