Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany.
NanoP, Technische Hochschule Mittelhessen, University of Applied Science, Gießen, Germany.
Nature. 2022 Jun;606(7915):700-705. doi: 10.1038/s41586-022-04837-4. Epub 2022 Jun 22.
Devices made using thin-film semiconductors have attracted much interest recently owing to new application possibilities. Among materials systems suitable for thin-film electronics, organic semiconductors are of particular interest; their low cost, biocompatible carbon-based materials and deposition by simple techniques such as evaporation or printing enable organic semiconductor devices to be used for ubiquitous electronics, such as those used on or in the human body or on clothing and packages. The potential of organic electronics can be leveraged only if the performance of organic transistors is improved markedly. Here we present organic bipolar transistors with outstanding device performance: a previously undescribed vertical architecture and highly crystalline organic rubrene thin films yield devices with high differential amplification (more than 100) and superior high-frequency performance over conventional devices. These bipolar transistors also give insight into the minority carrier diffusion length-a key parameter in organic semiconductors. Our results open the door to new device concepts of high-performance organic electronics with ever faster switching speeds.
最近,由于新的应用可能性,使用薄膜半导体的器件引起了广泛关注。在适合薄膜电子学的材料系统中,有机半导体尤其受到关注;它们的低成本、基于碳的生物相容性材料以及通过蒸发或印刷等简单技术进行沉积,使有机半导体器件能够用于无处不在的电子设备,例如用于人体或衣物和包装上的电子设备。只有显著提高有机晶体管的性能,才能发挥有机电子学的潜力。在这里,我们展示了具有出色器件性能的有机双极晶体管:前所未有的垂直结构和高度结晶的有机并五苯薄膜使器件具有高差分放大(超过 100)和优于传统器件的高频性能。这些双极晶体管还深入了解了少数载流子扩散长度这一有机半导体中的关键参数。我们的结果为具有更快开关速度的高性能有机电子学的新器件概念打开了大门。