Wang Juan, Bonil Amric, Frede Jan, Petrauskas Lautaro, Vahland Jörn, Antrack Tobias, Matthus Christian, Jang Wooik, Kleemann Hans
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Straße 61, 01187, Dresden, Germany.
Chair for Circuit Design and Network Theory (CCN), Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany.
Adv Mater. 2025 Jul;37(28):e2419974. doi: 10.1002/adma.202419974. Epub 2025 May 6.
Organic thin-film transistors (OTFTs) are promising for flexible, low-cost, and biocompatible electronics. However, conventional planar OTFTs are hindered by the large channel length limiting the transconductance and switching frequencies. Vertical OTFTs, particularly organic permeable-base transistors (OPBTs), address these challenges with short channel lengths defined by the layer thickness. While n-type OPBTs have advanced significantly, p-type OPBTs face challenges such as lower transmission, higher leakage currents, and unreliable fabrication processes. This work introduces a wafer-scale method for fabricating p-type OPBTs using electrochemical anodization of the base electrode. The anodization process applied directly atop the organic semiconductor, preserves electrical properties while suppressing base leakage. The resulting anodized OPBTs exhibit high-performance characteristics, including an on-current density of 301 mAcm, low leakage current of 4.32 × 10 A, maximum transmission of 99.9999%, and a maximum current gain of 1.89 × 10-a 100,000-fold improvement over prior methods. Small signal analysis reveals a cutoff frequency of 1.49 MHz, with a voltage-normalized cutoff frequency of 0.54 MHzV. Large-scale arrays show 96.3% fabrication yield and excellent uniformity. Complementary inverters integrating n- and p-type OPBTs exhibit superior switching, highlighting the potential of anodized OPBTs for advanced applications in displays and circuits.
有机薄膜晶体管(OTFT)在柔性、低成本和生物相容性电子器件方面具有广阔前景。然而,传统的平面OTFT受到大沟道长度的限制,这限制了跨导和开关频率。垂直OTFT,特别是有机渗透基晶体管(OPBT),通过由层厚度定义的短沟道长度解决了这些挑战。虽然n型OPBT已经取得了显著进展,但p型OPBT面临着诸如较低的传输率、较高的漏电流和不可靠的制造工艺等挑战。这项工作介绍了一种使用基电极的电化学阳极氧化来制造p型OPBT的晶圆级方法。直接应用于有机半导体顶部的阳极氧化工艺,在抑制基极泄漏的同时保持了电学性能。由此产生的阳极氧化OPBT表现出高性能特性,包括301 mA/cm²的导通电流密度、4.32×10⁻¹⁰ A的低漏电流、99.9999%的最大传输率以及1.89×10⁻⁴的最大电流增益,比现有方法提高了100000倍。小信号分析显示截止频率为1.49 MHz,电压归一化截止频率为0.54 MHz/V。大规模阵列显示出96.3%的制造良率和出色的均匀性。集成n型和p型OPBT的互补反相器表现出卓越的开关性能,突出了阳极氧化OPBT在显示器和电路等先进应用中的潜力。