Suppr超能文献

非侵入性脑刺激与神经增强

Non-invasive brain stimulation and neuroenhancement.

作者信息

Antal Andrea, Luber Bruce, Brem Anna-Katharine, Bikson Marom, Brunoni Andre R, Cohen Kadosh Roi, Dubljević Veljko, Fecteau Shirley, Ferreri Florinda, Flöel Agnes, Hallett Mark, Hamilton Roy H, Herrmann Christoph S, Lavidor Michal, Loo Collen, Lustenberger Caroline, Machado Sergio, Miniussi Carlo, Moliadze Vera, Nitsche Michael A, Rossi Simone, Rossini Paolo M, Santarnecchi Emiliano, Seeck Margitta, Thut Gregor, Turi Zsolt, Ugawa Yoshikazu, Venkatasubramanian Ganesan, Wenderoth Nicole, Wexler Anna, Ziemann Ulf, Paulus Walter

机构信息

Department of Neurology, University Medical Center, Göttingen, Germany.

Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.

出版信息

Clin Neurophysiol Pract. 2022 May 25;7:146-165. doi: 10.1016/j.cnp.2022.05.002. eCollection 2022.

Abstract

Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.

摘要

在科学领域,增强人类记忆力和学习能力的尝试由来已久。由于全球老年人口比例不断上升以及预计与年龄相关的脑功能认知衰退的增加,这个话题最近受到了广泛关注。经颅脑刺激方法,如经颅磁刺激(TMS)和经颅电刺激(tES),已被广泛用于改善人类认知功能。在此,我们总结了为此目的使用低强度tES的现有数据,并与重复TMS以及一些药物制剂(如咖啡因和尼古丁)进行比较。在脑刺激领域,没有一个领域只报道了积极的结果。对于自我导向的tES设备,如何限制疗效的变异性是设备设计和功能的一个重要方面。与任何技术一样,可重复的结果取决于设备以及设备与操作人员经验和技能的匹配程度。对于自我施用的非侵入性脑刺激,这需要在设备设计中严格纳入人类操作人员因素。非侵入性脑刺激的参数空间很广,包括剂量(如持续时间、强度(电流密度)、重复次数)、纳入/排除标准(如受试者年龄)、稳态效应、刺激前和刺激期间的任务施用,以及最重要的安慰剂或反安慰剂效应,都必须加以考虑。刺激结果预计取决于这些参数,应严格控制。专家们的共识是,只要遵循经过测试和认可的方案(包括例如剂量、纳入/排除标准),并使用遵循既定工程风险管理程序的设备,低强度tES就是安全的。允许在这些参数之外进行刺激的设备和方案,在其应用的刺激超出已发表研究中所研究的范围(这些研究也调查了潜在副作用)时,不能声称是“安全的”。面向消费者销售的脑刺激设备与医疗设备不同,因为它们不提出医疗主张,因此不一定受到与医疗设备相同程度的监管(即由负责监管医疗设备的政府机构监管)。制造商在销售tES刺激器时必须遵循道德和最佳实践,包括不通过引用使用与他们的设备和方案不同的人体试验效果来误导用户。

相似文献

1
Non-invasive brain stimulation and neuroenhancement.
Clin Neurophysiol Pract. 2022 May 25;7:146-165. doi: 10.1016/j.cnp.2022.05.002. eCollection 2022.
2
Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.
Neuroimage Clin. 2015 Mar 24;8:1-31. doi: 10.1016/j.nicl.2015.03.016. eCollection 2015.
6
Non-invasive brain stimulation techniques for chronic pain.
Cochrane Database Syst Rev. 2018 Apr 13;4(4):CD008208. doi: 10.1002/14651858.CD008208.pub5.
7
Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability.
Front Hum Neurosci. 2016 Dec 27;10:668. doi: 10.3389/fnhum.2016.00668. eCollection 2016.

引用本文的文献

3
Personalized home based neurostimulation via AI optimization augments sustained attention.
NPJ Digit Med. 2025 Jul 29;8(1):463. doi: 10.1038/s41746-025-01744-6.
5
Functional connectivity and GABAergic signaling modulate the enhancement effect of neurostimulation on mathematical learning.
PLoS Biol. 2025 Jul 1;23(7):e3003200. doi: 10.1371/journal.pbio.3003200. eCollection 2025 Jul.
7
Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system.
Neural Regen Res. 2026 Apr 1;21(4):1264-1276. doi: 10.4103/NRR.NRR-D-24-01613. Epub 2025 Jun 19.
8
Neurotechnology for enhancing human operation of robotic and semi-autonomous systems.
Front Robot AI. 2025 May 23;12:1491494. doi: 10.3389/frobt.2025.1491494. eCollection 2025.

本文引用的文献

1
Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper.
Clin Neurophysiol. 2022 Aug;140:59-97. doi: 10.1016/j.clinph.2022.04.022. Epub 2022 May 18.
2
Age-dependent non-linear neuroplastic effects of cathodal tDCS in the elderly population: a titration study.
Brain Stimul. 2022 Mar-Apr;15(2):296-305. doi: 10.1016/j.brs.2022.01.011. Epub 2022 Jan 24.
3
The Role of Expectation and Beliefs on the Effects of Non-Invasive Brain Stimulation.
Brain Sci. 2021 Nov 18;11(11):1526. doi: 10.3390/brainsci11111526.
4
Neurostimulation, doping, and the spirit of sport.
Neuroethics. 2021;14(Suppl 2):141-158. doi: 10.1007/s12152-020-09435-7. Epub 2020 May 16.
5
Weak DCS causes a relatively strong cumulative boost of synaptic plasticity with spaced learning.
Brain Stimul. 2022 Jan-Feb;15(1):57-62. doi: 10.1016/j.brs.2021.10.552. Epub 2021 Nov 5.
6
Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population.
Sci Rep. 2021 Nov 2;11(1):21512. doi: 10.1038/s41598-021-00933-z.
7
Telehealth transcranial direct current stimulation for recovery from Post-Acute Sequelae of SARS-CoV-2 (PASC).
Brain Stimul. 2021 Nov-Dec;14(6):1520-1522. doi: 10.1016/j.brs.2021.10.381. Epub 2021 Oct 14.
8
Personalized brain stimulation for effective neurointervention across participants.
PLoS Comput Biol. 2021 Sep 9;17(9):e1008886. doi: 10.1371/journal.pcbi.1008886. eCollection 2021 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验