Suppr超能文献

整合遗传学和代谢组学数据分析的网络方法及其在胎儿编程研究中的应用

Network Approaches to Integrate Analyses of Genetics and Metabolomics Data with Applications to Fetal Programming Studies.

作者信息

Kuang Alan, Hayes M Geoffrey, Hivert Marie-France, Balasubramanian Raji, Lowe William L, Scholtens Denise M

机构信息

Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.

Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL 60611, USA.

出版信息

Metabolites. 2022 Jun 2;12(6):512. doi: 10.3390/metabo12060512.

Abstract

The integration of genetics and metabolomics data demands careful accounting of complex dependencies, particularly when modelling familial omics data, e.g., to study fetal programming of related maternal-offspring phenotypes. Efforts to identify genetically determined metabotypes using classic genome wide association approaches have proven useful for characterizing complex disease, but conclusions are often limited to a series of variant-metabolite associations. We adapt Bayesian network models to integrate metabotypes with maternal-offspring genetic dependencies and metabolic profile correlations in order to investigate mechanisms underlying maternal-offspring phenotypic associations. Using data from the multiethnic Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study, we demonstrate that the strategic specification of ordered dependencies, pre-filtering of candidate metabotypes, incorporation of metabolite dependencies, and penalized network estimation methods clarify potential mechanisms for fetal programming of newborn adiposity and metabolic outcomes. The exploration of Bayesian network growth over a range of penalty parameters, coupled with interactive plotting, facilitate the interpretation of network edges. These methods are broadly applicable to integration of diverse omics data for related individuals.

摘要

整合遗传学和代谢组学数据需要仔细考虑复杂的依赖性,尤其是在对家族组学数据进行建模时,例如研究相关母体-后代表型的胎儿编程。使用经典全基因组关联方法识别基因决定的代谢型的努力已被证明对表征复杂疾病有用,但结论往往仅限于一系列变异-代谢物关联。我们采用贝叶斯网络模型来整合代谢型与母体-后代遗传依赖性以及代谢谱相关性,以研究母体-后代表型关联背后的机制。利用来自多民族高血糖与不良妊娠结局(HAPO)研究的数据,我们证明了有序依赖性的策略性设定、候选代谢型的预筛选、代谢物依赖性的纳入以及惩罚网络估计方法,阐明了新生儿肥胖和代谢结局的胎儿编程的潜在机制。在一系列惩罚参数范围内探索贝叶斯网络增长,并结合交互式绘图,有助于解释网络边。这些方法广泛适用于整合相关个体的各种组学数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b4/9229972/5959a2cab846/metabolites-12-00512-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验