Zareifi Danae Stella, Chaliotis Odysseas, Chala Nafsika, Meimetis Nikos, Sofotasiou Maria, Zeakis Konstantinos, Pantiora Eirini, Vezakis Antonis, Matsopoulos George K, Fragulidis Georgios, Alexopoulos Leonidas G
School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 15780 Athens, Greece.
School of Electrical Engineering, National Technical University of Athens, 15780 Athens, Greece.
iScience. 2022 Feb 9;25(3):103890. doi: 10.1016/j.isci.2022.103890. eCollection 2022 Mar 18.
Non-alcoholic fatty liver disease (NAFLD) is among the most common liver pathologies, however, none approved condition-specific therapy yet exists. The present study introduces a drug repositioning (DR) approach that combines steatosis models with a network-based computational platform, constructed upon genomic data from diseased liver biopsies and compound-treated cell lines, to propose effectively repositioned therapeutic compounds. The introduced approach screened 20'000 compounds, while complementary and proteomic assays were developed to test the efficacy of the 46 predictions. This approach successfully identified six compounds, including the known anti-steatogenic drugs resveratrol and sirolimus. In short, gallamine triethiotide, diflorasone, fenoterol, and pralidoxime ameliorate steatosis similarly to resveratrol/sirolimus. The implementation holds great potential in reducing screening time in the early drug discovery stages and in delivering promising compounds for testing.
非酒精性脂肪性肝病(NAFLD)是最常见的肝脏疾病之一,然而,目前尚无针对该疾病的特异性获批疗法。本研究引入了一种药物重新定位(DR)方法,该方法将脂肪变性模型与基于网络的计算平台相结合,该平台基于患病肝脏活检和化合物处理的细胞系的基因组数据构建,以有效提出重新定位的治疗性化合物。所引入的方法筛选了20000种化合物,同时开发了互补的蛋白质组学分析来测试46种预测结果的有效性。该方法成功鉴定出六种化合物,包括已知的抗脂肪生成药物白藜芦醇和西罗莫司。简而言之,三乙硫代胆碱、地夫可特、非诺特罗和氯解磷定改善脂肪变性的效果与白藜芦醇/西罗莫司相似。该方法在减少早期药物发现阶段的筛选时间以及提供有前景的化合物进行测试方面具有巨大潜力。