Suppr超能文献

通过转诊信主题建模进行患者分诊:可行性研究

Patient Triage by Topic Modeling of Referral Letters: Feasibility Study.

作者信息

Spasic Irena, Button Kate

机构信息

School of Computer Science & Informatics, Cardiff University, Cardiff, United Kingdom.

School of Healthcare Sciences, Cardiff University, Cardiff, United Kingdom.

出版信息

JMIR Med Inform. 2020 Nov 6;8(11):e21252. doi: 10.2196/21252.

Abstract

BACKGROUND

Musculoskeletal conditions are managed within primary care, but patients can be referred to secondary care if a specialist opinion is required. The ever-increasing demand for health care resources emphasizes the need to streamline care pathways with the ultimate aim of ensuring that patients receive timely and optimal care. Information contained in referral letters underpins the referral decision-making process but is yet to be explored systematically for the purposes of treatment prioritization for musculoskeletal conditions.

OBJECTIVE

This study aims to explore the feasibility of using natural language processing and machine learning to automate the triage of patients with musculoskeletal conditions by analyzing information from referral letters. Specifically, we aim to determine whether referral letters can be automatically assorted into latent topics that are clinically relevant, that is, considered relevant when prescribing treatments. Here, clinical relevance is assessed by posing 2 research questions. Can latent topics be used to automatically predict treatment? Can clinicians interpret latent topics as cohorts of patients who share common characteristics or experiences such as medical history, demographics, and possible treatments?

METHODS

We used latent Dirichlet allocation to model each referral letter as a finite mixture over an underlying set of topics and model each topic as an infinite mixture over an underlying set of topic probabilities. The topic model was evaluated in the context of automating patient triage. Given a set of treatment outcomes, a binary classifier was trained for each outcome using previously extracted topics as the input features of the machine learning algorithm. In addition, a qualitative evaluation was performed to assess the human interpretability of topics.

RESULTS

The prediction accuracy of binary classifiers outperformed the stratified random classifier by a large margin, indicating that topic modeling could be used to predict the treatment, thus effectively supporting patient triage. The qualitative evaluation confirmed the high clinical interpretability of the topic model.

CONCLUSIONS

The results established the feasibility of using natural language processing and machine learning to automate triage of patients with knee or hip pain by analyzing information from their referral letters.

摘要

背景

肌肉骨骼疾病在初级保健机构进行管理,但如果需要专家意见,患者可被转诊至二级保健机构。对医疗保健资源的需求不断增加,这凸显了简化护理路径的必要性,其最终目标是确保患者获得及时且最佳的护理。转诊信中包含的信息是转诊决策过程的基础,但尚未针对肌肉骨骼疾病的治疗优先级进行系统研究。

目的

本研究旨在探讨使用自然语言处理和机器学习通过分析转诊信中的信息来自动对肌肉骨骼疾病患者进行分诊的可行性。具体而言,我们旨在确定转诊信是否可以自动分类为与临床相关的潜在主题,即在开处方时被认为相关的主题。在此,通过提出两个研究问题来评估临床相关性。潜在主题能否用于自动预测治疗?临床医生能否将潜在主题解释为具有共同特征或经历(如病史、人口统计学和可能的治疗方法)的患者群体?

方法

我们使用潜在狄利克雷分配将每封转诊信建模为一组潜在主题上的有限混合,并将每个主题建模为一组潜在主题概率上的无限混合。在自动分诊患者的背景下对主题模型进行评估。给定一组治疗结果,使用先前提取的主题作为机器学习算法的输入特征,为每个结果训练一个二元分类器。此外,进行了定性评估以评估主题的人类可解释性。

结果

二元分类器的预测准确率大幅超过分层随机分类器,表明主题建模可用于预测治疗,从而有效地支持患者分诊。定性评估证实了主题模型具有较高的临床可解释性。

结论

结果证实了使用自然语言处理和机器学习通过分析转诊信中的信息来自动对膝关节或髋关节疼痛患者进行分诊的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验