Suppr超能文献

用于癌症液体活检的循环细胞外囊泡的机器学习辅助傅里叶变换红外光谱分析

Machine Learning-Assisted FTIR Analysis of Circulating Extracellular Vesicles for Cancer Liquid Biopsy.

作者信息

Di Santo Riccardo, Vaccaro Maria, Romanò Sabrina, Di Giacinto Flavio, Papi Massimiliano, Rapaccini Gian Ludovico, De Spirito Marco, Miele Luca, Basile Umberto, Ciasca Gabriele

机构信息

Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.

Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.

出版信息

J Pers Med. 2022 Jun 10;12(6):949. doi: 10.3390/jpm12060949.

Abstract

Extracellular vesicles (EVs) are abundantly released into the systemic circulation, where they show remarkable stability and harbor molecular constituents that provide biochemical information about their cells of origin. Due to this characteristic, EVs are attracting increasing attention as a source of circulating biomarkers for cancer liquid biopsy and personalized medicine. Despite this potential, none of the discovered biomarkers has entered the clinical practice so far, and novel approaches for the label-free characterization of EVs are highly demanded. In this regard, Fourier Transform Infrared Spectroscopy (FTIR) has great potential as it provides a quick, reproducible, and informative biomolecular fingerprint of EVs. In this pilot study, we investigated, for the first time in the literature, the capability of FTIR spectroscopy to distinguish between EVs extracted from sera of cancer patients and controls based on their mid-IR spectral response. For this purpose, EV-enriched suspensions were obtained from the serum of patients diagnosed with Hepatocellular Carcinoma (HCC) of nonviral origin and noncancer subjects. Our data point out the presence of statistically significant differences in the integrated intensities of major mid-IR absorption bands, including the carbohydrate and nucleic acids band, the protein amide I and II bands, and the lipid CH stretching band. Additionally, we used Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) for the automated classification of spectral data according to the shape of specific mid-IR spectral signatures. The diagnostic performances of the proposed spectral biomarkers, alone and combined, were evaluated using multivariate logistic regression followed by a Receiving Operator Curve analysis, obtaining large Areas Under the Curve (AUC = 0.91, 95% CI 0.81-1.0). Very interestingly, our analyses suggest that the discussed spectral biomarkers can outperform the classification ability of two widely used circulating HCC markers measured on the same groups of subjects, namely alpha-fetoprotein (AFP), and protein induced by the absence of vitamin K or antagonist-II (PIVKA-II).

摘要

细胞外囊泡(EVs)大量释放到体循环中,在那里它们表现出显著的稳定性,并携带分子成分,这些分子成分提供了有关其起源细胞的生化信息。由于这一特性,EVs作为癌症液体活检和个性化医疗的循环生物标志物来源正受到越来越多的关注。尽管有这种潜力,但迄今为止发现的生物标志物都尚未进入临床实践,因此对EVs进行无标记表征的新方法有很高的需求。在这方面,傅里叶变换红外光谱(FTIR)具有很大的潜力,因为它能提供EVs快速、可重复且信息丰富的生物分子指纹图谱。在这项初步研究中,我们首次在文献中研究了FTIR光谱基于中红外光谱响应区分癌症患者和对照血清中提取的EVs的能力。为此,从诊断为非病毒起源的肝细胞癌(HCC)患者和非癌症受试者的血清中获得了富含EVs的悬浮液。我们的数据指出,主要中红外吸收带的积分强度存在统计学上的显著差异,包括碳水化合物和核酸带、蛋白质酰胺I和II带以及脂质CH伸缩带。此外,我们使用主成分分析结合线性判别分析(PCA-LDA)根据特定中红外光谱特征的形状对光谱数据进行自动分类。使用多变量逻辑回归,然后进行接受者操作曲线分析,评估所提出的光谱生物标志物单独和组合时的诊断性能,获得了较大的曲线下面积(AUC = 0.91,95% CI 0.81 - 1.0)。非常有趣的是,我们的分析表明,所讨论的光谱生物标志物的分类能力可以超过在同一组受试者上测量的两种广泛使用的循环HCC标志物,即甲胎蛋白(AFP)和维生素K缺乏或拮抗剂-II诱导蛋白(PIVKA-II)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfd4/9224706/65ff9d3a9418/jpm-12-00949-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验