Suppr超能文献

癌细胞衍生外泌体检测与分析的最新进展

Recent Progress in Detection and Profiling of Cancer Cell-Derived Exosomes.

作者信息

Xiong Huiwen, Huang Zhipeng, Yang Zhejun, Lin Qiuyuan, Yang Bin, Fang Xueen, Liu Baohong, Chen Hui, Kong Jilie

机构信息

Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China.

出版信息

Small. 2021 Sep;17(35):e2007971. doi: 10.1002/smll.202007971. Epub 2021 Jun 2.

Abstract

Exosomes, known as nanometer-sized vesicles (30-200 nm), are secreted by many types of cells. Cancer-derived exosomes have great potential to be biomarkers for early clinical diagnosis and evaluation of cancer therapeutic efficacy. Conventional detection methods are limited to low sensitivity and reproducibility. There are hundreds of papers published with different detection methods in recent years to address these challenges. Therefore, in this review, pioneering researches about various detection strategies are comprehensively summarized and the analytical performance of these tests is evaluated. Furthermore, the exosome molecular composition (protein and nucleic acid) profiling, a single exosome profiling, and their application in clinical cancer diagnosis are reviewed. Finally, the principles and applications of machine learning method in exosomes researches are presented.

摘要

外泌体是一种纳米级囊泡(30-200纳米),由多种类型的细胞分泌。癌症来源的外泌体极有可能成为癌症早期临床诊断及治疗效果评估的生物标志物。传统检测方法存在灵敏度低和重现性差的局限。近年来,已有数百篇论文发表了不同的检测方法以应对这些挑战。因此,在本综述中,全面总结了关于各种检测策略的开创性研究,并评估了这些检测方法的分析性能。此外,还对外泌体分子组成(蛋白质和核酸)分析、单个外泌体分析及其在临床癌症诊断中的应用进行了综述。最后,介绍了机器学习方法在外泌体研究中的原理及应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验