Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA 94305, USA.
Global MR Applications & Workflow, GE Healthcare, Menlo Park, CA 94025, USA.
Med Image Anal. 2024 Apr;93:103072. doi: 10.1016/j.media.2023.103072. Epub 2023 Dec 29.
Accurate quantification of cerebral blood flow (CBF) is essential for the diagnosis and assessment of a wide range of neurological diseases. Positron emission tomography (PET) with radiolabeled water (O-water) is the gold-standard for the measurement of CBF in humans, however, it is not widely available due to its prohibitive costs and the use of short-lived radiopharmaceutical tracers that require onsite cyclotron production. Magnetic resonance imaging (MRI), in contrast, is more accessible and does not involve ionizing radiation. This study presents a convolutional encoder-decoder network with attention mechanisms to predict the gold-standard O-water PET CBF from multi-contrast MRI scans, thus eliminating the need for radioactive tracers. The model was trained and validated using 5-fold cross-validation in a group of 126 subjects consisting of healthy controls and cerebrovascular disease patients, all of whom underwent simultaneous O-water PET/MRI. The results demonstrate that the model can successfully synthesize high-quality PET CBF measurements (with an average SSIM of 0.924 and PSNR of 38.8 dB) and is more accurate compared to concurrent and previous PET synthesis methods. We also demonstrate the clinical significance of the proposed algorithm by evaluating the agreement for identifying the vascular territories with impaired CBF. Such methods may enable more widespread and accurate CBF evaluation in larger cohorts who cannot undergo PET imaging due to radiation concerns, lack of access, or logistic challenges.
准确量化脑血流(CBF)对于诊断和评估广泛的神经疾病至关重要。正电子发射断层扫描(PET)结合放射性示踪剂水(O-水)是测量人类 CBF 的金标准,但由于其昂贵的成本和使用需要现场回旋加速器生产的短寿命放射性药物示踪剂,因此并不广泛应用。相比之下,磁共振成像(MRI)更易获得且不涉及电离辐射。本研究提出了一种具有注意力机制的卷积编解码器网络,用于从多对比度 MRI 扫描中预测金标准 O-水 PET CBF,从而消除了对放射性示踪剂的需求。该模型使用 126 名受试者的 5 折交叉验证进行了训练和验证,其中包括健康对照者和脑血管病患者,所有受试者均同时接受了 O-水 PET/MRI 检查。结果表明,该模型可以成功地合成高质量的 PET CBF 测量值(平均 SSIM 为 0.924,PSNR 为 38.8dB),并且比同时和以前的 PET 合成方法更准确。我们还通过评估识别 CBF 受损血管区域的一致性,展示了所提出算法的临床意义。这些方法可以使更多因辐射问题、无法获得或存在后勤挑战而无法进行 PET 成像的大队列患者能够更广泛和准确地评估 CBF。