Suppr超能文献

多视角视觉为基础的痉挛性斜颈评分方法的初步可行性研究。

Pilot Feasibility Study of a Multi-View Vision Based Scoring Method for Cervical Dystonia.

机构信息

Department of Computer Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201800, China.

The Key Laboratory of Embedded System and Service Computing Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201800, China.

出版信息

Sensors (Basel). 2022 Jun 20;22(12):4642. doi: 10.3390/s22124642.

Abstract

Abnormal movement of the head and neck is a typical symptom of Cervical Dystonia (CD). Accurate scoring on the severity scale is of great significance for treatment planning. The traditional scoring method is to use a protractor or contact sensors to calculate the angle of the movement, but this method is time-consuming, and it will interfere with the movement of the patient. In the recent outbreak of the coronavirus disease, the need for remote diagnosis and treatment of CD has become extremely urgent for clinical practice. To solve these problems, we propose a multi-view vision based CD severity scale scoring method, which detects the keypoint positions of the patient from the frontal and lateral images, and finally scores the severity scale by calculating head and neck motion angles. We compared the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) subscale scores calculated by our vision based method with the scores calculated by a neurologist trained in dyskinesia. An analysis of the correlation coefficient was then conducted. Intra-class correlation (ICC)(3,1) was used to measure absolute accuracy. Our multi-view vision based CD severity scale scoring method demonstrated sufficient validity and reliability. This low-cost and contactless method provides a new potential tool for remote diagnosis and treatment of CD.

摘要

头部和颈部的异常运动是颈肌张力障碍 (CD) 的典型症状。准确的严重程度评分对治疗计划具有重要意义。传统的评分方法是使用量角器或接触式传感器来计算运动的角度,但这种方法耗时,并且会干扰患者的运动。在最近爆发的冠状病毒病期间,远程诊断和治疗 CD 的需求对临床实践变得极为迫切。为了解决这些问题,我们提出了一种基于多视图视觉的 CD 严重程度评分方法,该方法从正面和侧面图像中检测患者的关键点位置,并最终通过计算头部和颈部运动角度来对严重程度进行评分。我们将我们基于视觉的方法计算的多伦多西部痉挛性斜颈严重程度评分量表 (TWSTRS) 子量表评分与经过运动障碍训练的神经科医生计算的评分进行了比较。然后进行了相关系数的分析。使用组内相关系数 (ICC)(3,1) 来衡量绝对准确性。我们的基于多视图视觉的 CD 严重程度评分方法具有足够的有效性和可靠性。这种低成本、非接触式的方法为 CD 的远程诊断和治疗提供了一种新的潜在工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28ba/9230118/03027f974385/sensors-22-04642-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验