School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China.
School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China.
Comput Biol Med. 2022 Jul;146:105549. doi: 10.1016/j.compbiomed.2022.105549. Epub 2022 Apr 25.
Based on bioinformatics and network pharmacology, the treatment of Saussurea involucrata (SAIN) on novel coronavirus (COVID-19) was evaluated by the GEO clinical sample gene difference analysis, compound-target molecular docking, and molecular dynamics simulation. role in the discovery of new targets for the prevention or treatment of COVID-19, to better serve the discovery and clinical application of new drugs.
Taking the Traditional Chinese Medicine System Pharmacology Database (TCMSP) as the starting point for the preliminary selection of compounds and targets, we used tools such as Cytoscape 3.8.0, TBtools 1.098, AutoDock vina, R 4.0.2, PyMol, and GROMACS to analyze the compounds of SAIN and targets were initially screened. To further screen the active ingredients and targets, we carried out genetic difference analysis (n = 72) through clinical samples of COVID-19 derived from GEO and carried out biological process (BP) analysis on these screened targets (P ≤ 0.05)., gene = 9), KEGG pathway analysis (FDR≤0.05, gene = 9), protein interaction network (PPI) analysis (gene = 9), and compounds-target-pathway network analysis (gene = 9), to obtain the target Point-regulated biological processes, disease pathways, and compounds-target-pathway relationships. Through the precise molecular docking between the compounds and the targets, we further screened SAIN's active ingredients (Affinity ≤ -7.2 kcal/mol) targets and visualized the data. After that, we performed molecular dynamics simulations and consulted a large number of related Validation of the results in the literature.
Through the screening, analysis, and verification of the data, it was finally confirmed that there are five main active ingredients in SAIN, which are Quercitrin, Rutin, Caffeic acid, Jaceosidin, and Beta-sitosterol, and mainly act on five targets. These targets mainly regulate Tuberculosis, TNF signaling pathway, Alzheimer's disease, Pertussis, Toll-like receptor signaling pathway, Influenza A, Non-alcoholic fatty liver disease (NAFLD), Neuroactive ligand-receptor interaction, Complement and coagulation cascades, Fructose and mannose metabolism, and Metabolic pathways, play a role in preventing or treating COVID-19. Molecular dynamics simulation results show that the four active ingredients of SAIN, Quercitrin, Rutin, Caffeic acid, and Jaceosidin, act on the four target proteins of COVID-19, AKR1B1, C5AR1, GSK3B, and IL1B to form complexes that can be very stable in the human environment. Tertiary structure exists.
Our study successfully explained the effective mechanism of SAIN in improving COVID-19, and at the same time predicted the potential targets of SAIN in the treatment of COVID-19, AKR1B1, IL1B, and GSK3B. It provides a new basis and provides great support for subsequent research on COVID-19.
基于生物信息学和网络药理学,通过 GEO 临床样本基因差异分析、化合物-靶标分子对接和分子动力学模拟,评估雪莲(SAIN)对新型冠状病毒(COVID-19)的治疗作用,以期发现 COVID-19 预防或治疗的新靶点,更好地为新药的发现和临床应用服务。
以中药系统药理学数据库(TCMSP)为化合物和靶点的初步筛选起点,使用 Cytoscape 3.8.0、TBtools 1.098、AutoDock vina、R 4.0.2、PyMol 和 GROMACS 等工具对 SAIN 的化合物和靶点进行初步筛选。为了进一步筛选活性成分和靶点,我们通过 GEO 中 COVID-19 的临床样本进行基因差异分析(n=72),并对这些筛选出的靶点进行生物过程(BP)分析(P≤0.05),基因=9)、KEGG 通路分析(FDR≤0.05,基因=9)、蛋白相互作用网络(PPI)分析(基因=9)和化合物-靶标-通路网络分析(基因=9),以获得目标点调节的生物过程、疾病途径和化合物-靶标-途径关系。通过化合物与靶点之间的精确分子对接,我们进一步筛选 SAIN 的活性成分(亲和力≤-7.2 kcal/mol)靶点,并可视化数据。之后,我们进行了分子动力学模拟,并查阅了大量相关文献进行结果验证。
通过对数据的筛选、分析和验证,最终确定 SAIN 有 5 种主要的活性成分,分别为槲皮素、芦丁、咖啡酸、乔松苷和β-谷甾醇,主要作用于 5 个靶点。这些靶点主要调控结核、TNF 信号通路、阿尔茨海默病、百日咳、Toll 样受体信号通路、流感 A、非酒精性脂肪性肝病(NAFLD)、神经活性配体-受体相互作用、补体和凝血级联、果糖和甘露糖代谢以及代谢途径,在预防或治疗 COVID-19 中发挥作用。分子动力学模拟结果表明,SAIN 的 4 种活性成分槲皮素、芦丁、咖啡酸和乔松苷作用于 COVID-19 的 4 个靶蛋白 AKR1B1、C5AR1、GSK3B 和 IL1B 形成复合物,能够在人体环境中非常稳定地存在于三级结构中。
本研究成功解释了 SAIN 改善 COVID-19 的有效机制,同时预测了 SAIN 治疗 COVID-19 的潜在靶点 AKR1B1、IL1B 和 GSK3B,为后续 COVID-19 研究提供了新的依据,提供了巨大的支持。