Tarima Sergey, Flournoy Nancy
Institute for Health and Society, Medical College of Wisconsin, 8701 Watertown Plank Rd 53226.
Department of Statistics, University of Missouri, 600 S. State St., #408, Bellingham, WA 98225.
Commun Stat Simul Comput. 2022;51(4):2053-2064. doi: 10.1080/03610918.2019.1692030. Epub 2019 Nov 22.
Asymptotic distribution theory for maximum likelihood estimators under fixed alternative hypotheses is reported in the literature even though the power of any realistic test converges to one under fixed alternatives. Under fixed alternatives, authors have established that nuisance parameter estimates are inconsistent when sample size re-estimation (SSR) follows blinded randomization. These results have helped to inhibit the use of SSR. In this paper, we argue for local alternatives to be used instead of fixed alternatives. Motivated by Gould and Shih (1998), we treat unavailable treatment assignments in blinded experiments as missing data and rely on single imputation from marginal distributions to fill in for missing data. With local alternatives, it is sufficient to proceed only with the first step of the EM algorithm mimicking imputation under the null hypothesis. Then, we show that blinded and unblinded estimates of the nuisance parameter are consistent, and re-estimated sample sizes converge to their locally asymptotically optimal values. This theoretical finding is confirmed through Monte-Carlo simulation studies. Practical utility is illustrated through a multiple logistic regression example. We conclude that, for hypothesis testing with a predetermined minimally clinically relevant local effect size, both blinded and unblinded SSR procedures lead to similar sample sizes and power.
尽管在固定备择假设下任何现实检验的功效在固定备择假设下会收敛到1,但文献中仍报道了最大似然估计量在固定备择假设下的渐近分布理论。在固定备择假设下,作者已经证明,当样本量重新估计(SSR)遵循盲法随机化时,干扰参数估计是不一致的。这些结果有助于抑制SSR的使用。在本文中,我们主张使用局部备择假设而非固定备择假设。受古尔德和施(1998年)的启发,我们将盲法实验中不可用的治疗分配视为缺失数据,并依靠边际分布的单一插补来填补缺失数据。对于局部备择假设,仅进行模拟原假设下插补的期望最大化(EM)算法的第一步就足够了。然后,我们表明干扰参数的盲法和非盲法估计是一致的,并且重新估计的样本量收敛到其局部渐近最优值。这一理论发现通过蒙特卡罗模拟研究得到了证实。通过一个多元逻辑回归示例说明了实际效用。我们得出结论,对于具有预先确定的最小临床相关局部效应大小的假设检验,盲法和非盲法SSR程序都会导致相似的样本量和功效。