Suppr超能文献

参数模型下经盲法和非盲法样本量重新估计后的分布理论

Distribution Theory Following Blinded and Unblinded Sample Size Re-estimation under Parametric Models.

作者信息

Tarima Sergey, Flournoy Nancy

机构信息

Institute for Health and Society, Medical College of Wisconsin, 8701 Watertown Plank Rd 53226.

Department of Statistics, University of Missouri, 600 S. State St., #408, Bellingham, WA 98225.

出版信息

Commun Stat Simul Comput. 2022;51(4):2053-2064. doi: 10.1080/03610918.2019.1692030. Epub 2019 Nov 22.

Abstract

Asymptotic distribution theory for maximum likelihood estimators under fixed alternative hypotheses is reported in the literature even though the power of any realistic test converges to one under fixed alternatives. Under fixed alternatives, authors have established that nuisance parameter estimates are inconsistent when sample size re-estimation (SSR) follows blinded randomization. These results have helped to inhibit the use of SSR. In this paper, we argue for local alternatives to be used instead of fixed alternatives. Motivated by Gould and Shih (1998), we treat unavailable treatment assignments in blinded experiments as missing data and rely on single imputation from marginal distributions to fill in for missing data. With local alternatives, it is sufficient to proceed only with the first step of the EM algorithm mimicking imputation under the null hypothesis. Then, we show that blinded and unblinded estimates of the nuisance parameter are consistent, and re-estimated sample sizes converge to their locally asymptotically optimal values. This theoretical finding is confirmed through Monte-Carlo simulation studies. Practical utility is illustrated through a multiple logistic regression example. We conclude that, for hypothesis testing with a predetermined minimally clinically relevant local effect size, both blinded and unblinded SSR procedures lead to similar sample sizes and power.

摘要

尽管在固定备择假设下任何现实检验的功效在固定备择假设下会收敛到1,但文献中仍报道了最大似然估计量在固定备择假设下的渐近分布理论。在固定备择假设下,作者已经证明,当样本量重新估计(SSR)遵循盲法随机化时,干扰参数估计是不一致的。这些结果有助于抑制SSR的使用。在本文中,我们主张使用局部备择假设而非固定备择假设。受古尔德和施(1998年)的启发,我们将盲法实验中不可用的治疗分配视为缺失数据,并依靠边际分布的单一插补来填补缺失数据。对于局部备择假设,仅进行模拟原假设下插补的期望最大化(EM)算法的第一步就足够了。然后,我们表明干扰参数的盲法和非盲法估计是一致的,并且重新估计的样本量收敛到其局部渐近最优值。这一理论发现通过蒙特卡罗模拟研究得到了证实。通过一个多元逻辑回归示例说明了实际效用。我们得出结论,对于具有预先确定的最小临床相关局部效应大小的假设检验,盲法和非盲法SSR程序都会导致相似的样本量和功效。

相似文献

引用本文的文献

1
Bias induced by adaptive dose-finding designs.适应性剂量探索设计引起的偏倚。
J Appl Stat. 2019 Aug 1;47(13-15):2431-2442. doi: 10.1080/02664763.2019.1649375. eCollection 2020.

本文引用的文献

4
Conditional estimation in two-stage adaptive designs.两阶段适应性设计中的条件估计
Biometrics. 2017 Sep;73(3):895-904. doi: 10.1111/biom.12642. Epub 2017 Jan 18.
5
Estimation after blinded sample size reassessment.盲法样本量再评估后的估计。
Stat Methods Med Res. 2018 Jun;27(6):1830-1846. doi: 10.1177/0962280216670424. Epub 2016 Oct 2.
7
Precision of maximum likelihood estimation in adaptive designs.适应性设计中最大似然估计的精度。
Stat Med. 2016 Mar 15;35(6):922-41. doi: 10.1002/sim.6761. Epub 2015 Oct 12.
8
Adaptive designs for confirmatory clinical trials.确证性临床试验的适应性设计
Stat Med. 2009 Apr 15;28(8):1181-217. doi: 10.1002/sim.3538.
9
Estimation in flexible two stage designs.灵活两阶段设计中的估计
Stat Med. 2006 Oct 15;25(19):3366-81. doi: 10.1002/sim.2258.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验