Song Rui, Kosorok Michael R, Fine Jason P
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, U.S.A. E-mail:
Ann Stat. 2009 Oct;37(5A):2409-2444. doi: 10.1214/08-aos643.
We consider tests of hypotheses when the parameters are not identifiable under the null in semiparametric models, where regularity conditions for profile likelihood theory fail. Exponential average tests based on integrated profile likelihood are constructed and shown to be asymptotically optimal under a weighted average power criterion with respect to a prior on the nonidentifiable aspect of the model. These results extend existing results for parametric models, which involve more restrictive assumptions on the form of the alternative than do our results. Moreover, the proposed tests accommodate models with infinite dimensional nuisance parameters which either may not be identifiable or may not be estimable at the usual parametric rate. Examples include tests of the presence of a change-point in the Cox model with current status data and tests of regression parameters in odds-rate models with right censored data. Optimal tests have not previously been studied for these scenarios. We study the asymptotic distribution of the proposed tests under the null, fixed contiguous alternatives and random contiguous alternatives. We also propose a weighted bootstrap procedure for computing the critical values of the test statistics. The optimal tests perform well in simulation studies, where they may exhibit improved power over alternative tests.
当半参数模型中的原假设下参数不可识别时,我们考虑假设检验,在这种情况下,轮廓似然理论的正则条件不成立。基于积分轮廓似然构建了指数平均检验,并证明在关于模型不可识别方面的先验的加权平均功效准则下,这些检验是渐近最优的。这些结果扩展了参数模型的现有结果,参数模型对备择假设形式的假设比我们的结果更具限制性。此外,所提出的检验适用于具有无限维干扰参数的模型,这些参数要么不可识别,要么不能以通常的参数速率估计。示例包括具有当前状态数据的Cox模型中是否存在变化点的检验以及具有右删失数据的比值率模型中回归参数的检验。以前尚未针对这些情况研究过最优检验。我们研究了所提出的检验在原假设、固定相邻备择假设和随机相邻备择假设下的渐近分布。我们还提出了一种加权自助法程序来计算检验统计量的临界值。在模拟研究中,最优检验表现良好,可能比其他检验具有更高的功效。