Suppr超能文献

整合代谢组学和蛋白质组学特征可确定重症 COVID-19 的临床结局。

Integrative metabolomic and proteomic signatures define clinical outcomes in severe COVID-19.

作者信息

Buyukozkan Mustafa, Alvarez-Mulett Sergio, Racanelli Alexandra C, Schmidt Frank, Batra Richa, Hoffman Katherine L, Sarwath Hina, Engelke Rudolf, Gomez-Escobar Luis, Simmons Will, Benedetti Elisa, Chetnik Kelsey, Zhang Guoan, Schenck Edward, Suhre Karsten, Choi Justin J, Zhao Zhen, Racine-Brzostek Sabrina, Yang He S, Choi Mary E, Choi Augustine M K, Cho Soo Jung, Krumsiek Jan

机构信息

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.

Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.

出版信息

iScience. 2022 Jul 15;25(7):104612. doi: 10.1016/j.isci.2022.104612. Epub 2022 Jun 17.

Abstract

The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare with previously unseen levels of morbidity and mortality. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a network of protein-metabolite interactions through targeted metabolomic and proteomic profiling in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity. Finally, we developed a novel composite outcome measure for COVID-19 disease severity based on metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and shows high predictive power of 0.83-0.93 in two independent datasets.

摘要

新型冠状病毒肺炎(COVID-19)大流行以前所未有的发病率和死亡率重创了全球医疗体系。在本研究中,我们对COVID-19患者的血清进行了大规模综合多组学分析,目的是揭示该疾病新的致病复杂性,并识别预测临床结果的分子特征。与97名非COVID住院对照相比, 我们通过对330名COVID-19患者进行靶向代谢组学和蛋白质组学分析,构建了一个蛋白质-代谢物相互作用网络。我们的网络确定了与免疫调节、能量和核苷酸代谢、血管稳态和胶原蛋白分解代谢相关的独特蛋白质-代谢物相互作用。此外,我们的数据将多种蛋白质和代谢物与长期死亡率和发病率相关的临床指标联系起来。最后,我们基于代谢组学数据开发了一种用于COVID-19疾病严重程度的新型综合结局指标。该模型预测严重疾病的一致性指数约为0.69,并在两个独立数据集中显示出0.83-0.93的高预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3225/9257343/7d35665874cd/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验