Suppr超能文献

基于机器学习的阿替普酶治疗后急性缺血性卒中出血转化预测模型

Machine Learning-Based Model for Prediction of Hemorrhage Transformation in Acute Ischemic Stroke After Alteplase.

作者信息

Xu Yanan, Li Xiaoli, Wu Di, Zhang Zhengsheng, Jiang Aizhong

机构信息

Department of Neurology, ZhongDa Hospital Southeast University (JiangBei) (NanJing DaChang Hospital), Nanjing, China.

Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China.

出版信息

Front Neurol. 2022 Jun 10;13:897903. doi: 10.3389/fneur.2022.897903. eCollection 2022.

Abstract

Hemorrhage transformation (HT) is the most dreaded complication of intravenous thrombolysis (IVT) in acute ischemic stroke (AIS). The prediction of HT after IVT is important in the treatment decision-making for AIS. We designed and compared different machine learning methods, capable of predicting HT in AIS after IVT. A total of 345 AIS patients who received intravenous alteplase between January 2016 and June 2021 were enrolled in this retrospective study. The demographic characteristics, clinical condition, biochemical data, and neuroimaging variables were included for analysis. HT was confirmed by head computed tomography (CT) or magnetic resonance imaging (MRI) within 48 h after IVT. Based on the neuroimaging results, all of the patients were divided into the non-HT group and the HT group. Then, the variables were applied in logistic regression (LR) and random forest (RF) algorithms to establish HT prediction models. To evaluate the accuracy of the machine learning models, the models were compared to several of the common scales used in clinics, including the multicenter stroke survey (MSS) score, safe implementation of treatments in stroke (SITS) score, and SEDAN score. The performance of these prediction models was evaluated using the receiver operating characteristic (ROC) curve (AUC). Forty-five patients had HT (13.0%) within 48 h after IVT. The ROC curve results showed that the AUCs of HT that were predicted by the RF model, LR model, MSS, SITS, and SEDAN scales after IVT were 0.795 (95% CI, 0.647-0.944), 0.703 (95% CI, 0.515-0.892), 0.657 (95% CI, 0.574-0.741), 0.660 (95% CI, 0.580-0.740) and 0.655 (95% CI, 0.571-0.739), respectively. The RF model performed better than the other models and scales. The top four most influential factors in the RF importance matrix plot were triglyceride, Lpa, the baseline NIHSS, and hemoglobin. The SHapley Additive exPlanation values made the RF prediction model clinically interpretable. In this study, an RF machine learning method was successfully established to predict HT in AIS patients after intravenous alteplase, which the sensitivity was 66.7%, and the specificity was 80.7%.

摘要

出血转化(HT)是急性缺血性卒中(AIS)静脉溶栓(IVT)最可怕的并发症。IVT后HT的预测对于AIS的治疗决策很重要。我们设计并比较了不同的机器学习方法,这些方法能够预测AIS患者IVT后的HT。本回顾性研究纳入了2016年1月至2021年6月期间接受静脉注射阿替普酶的345例AIS患者。纳入人口统计学特征、临床状况、生化数据和神经影像学变量进行分析。在IVT后48小时内通过头颅计算机断层扫描(CT)或磁共振成像(MRI)确认HT。根据神经影像学结果,将所有患者分为非HT组和HT组。然后,将这些变量应用于逻辑回归(LR)和随机森林(RF)算法,以建立HT预测模型。为了评估机器学习模型的准确性,将这些模型与临床上常用的几种量表进行比较,包括多中心卒中调查(MSS)评分、卒中治疗安全实施(SITS)评分和SEDAN评分。使用受试者操作特征(ROC)曲线(AUC)评估这些预测模型的性能。45例患者在IVT后48小时内发生HT(13.0%)。ROC曲线结果显示,IVT后RF模型、LR模型、MSS、SITS和SEDAN量表预测HT的AUC分别为0.795(95%CI,0.647-0.944)、0.703(95%CI,0.515-0.892)、0.657(95%CI,0.574-0.741)、0.660(95%CI,0.580-0.740)和0.655(95%CI,0.571-0.739)。RF模型的表现优于其他模型和量表。RF重要性矩阵图中影响最大的前四个因素是甘油三酯、脂蛋白A、基线美国国立卫生研究院卒中量表(NIHSS)评分和血红蛋白。SHapley加性解释值使RF预测模型具有临床可解释性。在本研究中,成功建立了一种RF机器学习方法来预测静脉注射阿替普酶后AIS患者的HT,其敏感性为66.7%,特异性为80.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf9c/9226411/cdb19caa7a6e/fneur-13-897903-g0001.jpg

相似文献

1
Machine Learning-Based Model for Prediction of Hemorrhage Transformation in Acute Ischemic Stroke After Alteplase.
Front Neurol. 2022 Jun 10;13:897903. doi: 10.3389/fneur.2022.897903. eCollection 2022.
4
Different Scores Predict the Value of Hemorrhagic Transformation after Intravenous Thrombolysis in Patients with Acute Ischemic Stroke.
Evid Based Complement Alternat Med. 2021 Oct 21;2021:2468052. doi: 10.1155/2021/2468052. eCollection 2021.
5
Symptomatic intracerebral hemorrhage after intravenous thrombolysis in Chinese patients: comparison of prediction models.
J Stroke Cerebrovasc Dis. 2015 Jun;24(6):1235-43. doi: 10.1016/j.jstrokecerebrovasdis.2015.01.026. Epub 2015 Apr 16.
9
Prediction of the development of acute kidney injury following cardiac surgery by machine learning.
Crit Care. 2020 Jul 31;24(1):478. doi: 10.1186/s13054-020-03179-9.
10
Intravenous Thrombolysis for Acute Ischemic Stroke in Patients With Cardiac Myxoma: A Case Series and Pooled Analysis.
Front Neurol. 2022 May 12;13:893807. doi: 10.3389/fneur.2022.893807. eCollection 2022.

引用本文的文献

10
Machine Learning Models for Predicting Early Neurological Deterioration and Risk Classification of Acute Ischemic Stroke.
Clin Appl Thromb Hemost. 2023 Jan-Dec;29:10760296231221738. doi: 10.1177/10760296231221738.

本文引用的文献

6
Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning.
Stroke. 2020 Dec;51(12):3541-3551. doi: 10.1161/STROKEAHA.120.030287. Epub 2020 Oct 12.
7
From Local Explanations to Global Understanding with Explainable AI for Trees.
Nat Mach Intell. 2020 Jan;2(1):56-67. doi: 10.1038/s42256-019-0138-9. Epub 2020 Jan 17.
9
Low hemoglobin and hematoma expansion after intracerebral hemorrhage.
Neurology. 2019 Jul 23;93(4):e372-e380. doi: 10.1212/WNL.0000000000007820. Epub 2019 Jun 17.
10
Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke.
Stroke. 2019 May;50(5):1263-1265. doi: 10.1161/STROKEAHA.118.024293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验