Centro Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, Setúbal 2910, Portugal.
Colloids Surf B Biointerfaces. 2022 Sep;217:112643. doi: 10.1016/j.colsurfb.2022.112643. Epub 2022 Jun 15.
The development of nanoparticles as antimicrobial agents against pathogenic bacteria has emerged as one of the leading global healthcare challenges. In this study, Mg(OH) NPs with controlled morphology and nanometric size, using two distinct counterions, chloride or nitrate, have been synthesized using Rosehip (RH) extract that has privileges beyond conventional chemical and physical methods. Various physicochemical techniques were used to characterize the RH-functionalized Mg-based NPs. They exhibited a spherical shape with a diameter of ~10 nm, low crystallinity compared to non-functionalized NPs, high polyphenol content, and negative zeta potential in three different media (HO, TSB, and cell medium). The resulting RH-functionalized Mg-based NPs also exhibited an increased antibacterial activity against Gram-positive (S. Epidermis and S. aureus) and Gram-negative (E. Coli) bacteria compared to those prepared in pure water (0 % RH), an effect that was well evident with low NPs contents (250 μg/mL). A preliminary attempt to elucidate their mechanism of action revealed that RH-functionalized Mg-based NPs could disrupt cellular structures (bacterial cell wall and cytoplasmic membrane) and damage the bacterial cell, as confirmed by TEM imaging. Noteworthy is that Mg-based NPs exhibited higher toxicity to bacteria than to eukaryotic cells. More significantly, was their enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model, when infected with S. aureus bacteria. Overall, our findings indicate that well-engineered Rosehip magnesium-based nanoparticles can be used as a green non-cytotoxic polyphenolic source in different antibacterial applications for the biomedical industry.
纳米颗粒作为抗病原细菌的抗菌剂的发展已成为全球主要的医疗保健挑战之一。在这项研究中,使用两种不同的抗衡离子(氯离子或硝酸盐),使用玫瑰果(RH)提取物合成了具有受控形态和纳米尺寸的 Mg(OH) NPs,该提取物具有超越传统化学和物理方法的特权。使用各种物理化学技术对 RH 功能化的基于 Mg 的 NPs 进行了表征。它们具有 ~10nm 的直径,与未功能化的 NPs 相比,具有较低的结晶度、较高的多酚含量和在三种不同介质(HO、TSB 和细胞培养基)中的负 ζ 电位。与在纯水中制备的 RH 功能化的基于 Mg 的 NPs(0%RH)相比,所得 RH 功能化的基于 Mg 的 NPs 对革兰氏阳性(表皮葡萄球菌和金黄色葡萄球菌)和革兰氏阴性(大肠杆菌)细菌的抗菌活性也有所提高,这一效果在低 NPs 含量(250μg/mL)下表现得尤为明显。初步尝试阐明其作用机制表明,RH 功能化的基于 Mg 的 NPs 可以破坏细胞结构(细菌细胞壁和细胞质膜)并破坏细菌细胞,这一点通过 TEM 成像得到了证实。值得注意的是,基于 Mg 的 NPs 对细菌的毒性高于真核细胞。更重要的是,当感染金黄色葡萄球菌时,它们在 Galleria mellonella 无脊椎动物动物模型中的体内功效得到了增强。总体而言,我们的研究结果表明,经过精心设计的玫瑰果镁基纳米颗粒可用作不同抗菌应用的生物医学工业中绿色、非细胞毒性的多酚源。