Suppr超能文献

正电子发射断层扫描(PET)示踪[Zr]Zr 标记的工程细胞外囊泡在体内的示踪,揭示了给药途径的器官特异性分布。

In vivo tracking of [Zr]Zr-labeled engineered extracellular vesicles by PET reveals organ-specific biodistribution based upon the route of administration.

机构信息

Translational Imaging & Pathology, Codiak BioSciences, Cambridge, MA, USA.

Pharmacology & Biomarkers, Codiak BioSciences, Cambridge, MA, USA.

出版信息

Nucl Med Biol. 2022 Sep-Oct;112-113:20-30. doi: 10.1016/j.nucmedbio.2022.06.004. Epub 2022 Jun 22.

Abstract

UNLABELLED

Extracellular vesicles (EVs) have garnered increasing interest as delivery vehicles for multiple classes of therapeutics based on their role as mediators in an important, natural intercellular communication system. We recently described a platform to allow the design, production and in vivo study of human EVs with specific properties (drug or tropism modifiers). This article seeks to compare and expand upon historical biodistribution and kinetic data by comparing systemically and compartmentally administered labeled engineered EVs using in vivo and ex vivo techniques.

METHODS

EVs were surface-labeled to high radiochemical purity and specific activity with Zirconium deferoxamine ([Zr]Zr-DFO) and/or cy7-scrambled antisense oligonucleotide (Cy7-ExoASO), or luminally loaded with GFP for in vivo tracking in rodents and non-human primates (NHPs). Positron Emission Tomography (PET) and subsequent immunohistochemistry (IHC) and autoradiography (ARG) cross-validation enabled assessment of the anatomical and cellular distribution of labeled EVs both spatially and temporally.

RESULTS

Over time, systemic administration of engineered EVs distributed preferentially to the liver and spleen (Intravenous, IV), gastrointestinal tract and lymph nodes (Intraperitoneal, IP) and local/regional lymph nodes (Subcutaneous, SC). Immunostaining of dissected organs displaying PET signal revealed co-localization of an EV marker (PTGFRN) with a subset of macrophage markers (CD206, F4/80, IBA1). Compartmental dosing into NHP cerebrospinal fluid (CSF) resulted in a heterogenous distribution of labeled EVs depending upon whether the route was intrathecal (ITH), intracisterna magna (ICM) or intracerebroventricular (ICV), compared to the homogeneous distribution observed in rodents. Thus anatomically, ITH administration in NHP revealed meningeal distribution along the neuraxis to the base of the skull. In contrast ICM and ICV dosing resulted in meningeal distribution around the skull and to the cervical and thoracic spinal column. Further characterization using IHC shows uptake in a subset of meningeal macrophages.

CONCLUSIONS

The present studies provide a comprehensive assessment of the fate of robustly and reproducibly labeled engineered EVs across several mammalian species. The in vivo distribution was observed to be both spatially and temporally dependent upon the route of administration providing insight into potential targeting opportunities for engineered EVs carrying a therapeutic payload.

摘要

未加标签

细胞外囊泡 (EVs) 作为多种治疗药物的载体越来越受到关注,这是基于它们作为一种重要的自然细胞间通讯系统的介导物的作用。我们最近描述了一个平台,允许设计、生产和体内研究具有特定特性的人类 EVs(药物或趋向修饰物)。本文旨在通过使用体内和体外技术比较系统性和隔室性给药标记的工程 EVs,来比较和扩展历史生物分布和动力学数据。

方法

EVs 用高放射化学纯度和比活性的锆去铁胺 ([Zr]Zr-DFO) 和/或 scrambled 反义寡核苷酸 (Cy7-ExoASO) 进行表面标记,或用 GFP 进行腔内负载,以便在啮齿动物和非人类灵长类动物 (NHPs) 中进行体内追踪。正电子发射断层扫描 (PET) 随后的免疫组织化学 (IHC) 和放射自显影 (ARG) 交叉验证能够评估标记 EVs 的空间和时间分布的解剖和细胞分布。

结果

随着时间的推移,工程 EVs 的系统性给药优先分布到肝脏和脾脏(静脉内,IV)、胃肠道和淋巴结(腹腔内,IP)和局部/区域淋巴结(皮下,SC)。显示 PET 信号的解剖器官的免疫染色显示 EV 标志物 (PTGFRN) 与巨噬细胞标志物 (CD206、F4/80、IBA1) 的一部分共定位。将药物分入 NHP 脑脊液 (CSF) 中,根据给药途径是鞘内 (ITH)、脑池内 (ICM) 还是脑室内 (ICV),会导致标记 EVs 的不均匀分布,而在啮齿动物中观察到的是均匀分布。因此,在 NHP 中,ITH 给药显示沿着神经轴突向颅底的脑膜分布。相比之下,ICM 和 ICV 给药导致颅骨周围和颈椎和胸椎脊髓的脑膜分布。使用 IHC 进行进一步表征显示,脑膜巨噬细胞中有一部分摄取了药物。

结论

本研究提供了对几种哺乳动物物种中稳健且可重复标记的工程 EVs 命运的全面评估。体内分布在空间和时间上都依赖于给药途径,为携带治疗有效载荷的工程 EVs 的潜在靶向机会提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验