Suppr超能文献

一种基于熵的方法,利用意见领袖控制在线社交网络中的新冠疫情谣言。

An entropy-based method to control COVID-19 rumors in online social networks using opinion leaders.

作者信息

Jain Lokesh

机构信息

Department of Computer Science & Engineering, India.

Delhi Technological University, New Delhi, India.

出版信息

Technol Soc. 2022 Aug;70:102048. doi: 10.1016/j.techsoc.2022.102048. Epub 2022 Jun 23.

Abstract
  • In the ongoing COVID-19 pandemic, people spread various COVID-19-related rumors and hoaxes that negatively influence human civilization through online social networks (OSN). The proposed research addresses the unique and innovative approach to controlling COVID-19 rumors through the power of opinion leaders (OLs) in OSN. The entire process is partitioned into two phases; the first phase describes the novel eputation-based pinion eader dentification algorithm, including a unique voting method to identify the top-T OLs in the OSN. The second phase describes the technique to measure the aggregated polarity score of each posted tweet/post and compute each user's reputation. The empirical reputation is utilized to calculate the user's trust, the post's entropy, and its veracity. If the experimental entropy of the post is lower than the empirical threshold value, the post is likely to be categorized as a rumor. The proposed approach operated on Twitter, Instagram, and Reddit social networks for validation. The ROLI algorithm provides 91% accuracy, 93% precision, 95% recall, and 94% F1-score over other Social Network Analysis (SNA) measures to find OLs in OSN. Moreover, the proposed approach's rumor controlling effectiveness and efficiency is also estimated based on three standard metrics; affected degree, represser degree, and diffuser degree, and obtained 26%, 22%, and 23% improvement, respectively. The concluding outcomes illustrate that the influence of OLs is exceptionally significant in controlling COVID-19 rumors.
摘要

在持续的新冠疫情大流行期间,人们通过在线社交网络(OSN)传播各种与新冠病毒相关的谣言和恶作剧,对人类文明产生了负面影响。本研究提出了一种独特且创新的方法,通过意见领袖(OL)在在线社交网络中的影响力来控制新冠谣言。整个过程分为两个阶段;第一阶段描述了基于声誉的新型意见领袖识别算法,包括一种独特的投票方法,用于识别在线社交网络中的前T名意见领袖。第二阶段描述了测量每条发布推文/帖子的聚合极性得分并计算每个用户声誉的技术。利用经验声誉来计算用户的信任度、帖子的熵及其真实性。如果帖子的实验熵低于经验阈值,则该帖子可能被归类为谣言。所提出的方法在推特、照片墙和红迪网社交网络上进行了验证。与其他用于在在线社交网络中寻找意见领袖的社交网络分析(SNA)方法相比,ROLI算法的准确率为91%,精确率为93%,召回率为95%,F1分数为94%。此外,还基于三个标准指标评估了所提出方法的谣言控制有效性和效率;受影响程度、抑制程度和扩散程度,分别提高了26%、22%和23%。最终结果表明,意见领袖在控制新冠谣言方面的影响非常显著。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验