Suppr超能文献

基于宏基因组关联分析的结直肠癌粪便微生物标志物研究

Meta-Analysis of Altered Gut Microbiota Reveals Microbial and Metabolic Biomarkers for Colorectal Cancer.

机构信息

Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Centergrid.266813.8, Omaha, Nebraska, USA.

Center for BioInformatics Research and Innovation (CBIRI), University of Nebraska Medical Centergrid.266813.8, Omaha, Nebraska, USA.

出版信息

Microbiol Spectr. 2022 Aug 31;10(4):e0001322. doi: 10.1128/spectrum.00013-22. Epub 2022 Jun 29.

Abstract

Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. The dysbiotic gut microbiota and its metabolite secretions play a significant role in CRC development and progression. In this study, we identified microbial and metabolic biomarkers applicable to CRC using a meta-analysis of metagenomic datasets from diverse geographical regions. We used LEfSe, random forest (RF), and co-occurrence network methods to identify microbial biomarkers. Geographic dataset-specific markers were identified and evaluated using area under the ROC curve (AUC) scores and random effect size. Co-occurrence networks analysis showed a reduction in the overall microbial associations and the presence of oral pathogenic microbial clusters in CRC networks. Analysis of predicted metabolites from CRC datasets showed the enrichment of amino acids, cadaverine, and creatine in CRC, which were positively correlated with CRC-associated microbes (Peptostreptococcus stomatis, Gemella morbillorum, Bacteroides fragilis, spp., Fusobacterium nucleatum, Solobacterium moorei, and Clostridium symbiosum), and negatively correlated with control-associated microbes. Conversely, butyrate, nicotinamide, choline, tryptophan, and 2-hydroxybutanoic acid showed positive correlations with control-associated microbes ( < 0.05). Overall, our study identified a set of global CRC biomarkers that are reproducible across geographic regions. We also reported significant differential metabolites and microbe-metabolite interactions associated with CRC. This study provided significant insights for further investigations leading to the development of noninvasive CRC diagnostic tools and therapeutic interventions. Several studies showed associations between gut dysbiosis and CRC. Yet, the results are not conclusive due to cohort-specific associations that are influenced by genomic, dietary, and environmental stimuli and associated reproducibility issues with various analysis approaches. Emerging evidence suggests the role of microbial metabolites in modulating host inflammation and DNA damage in CRC. However, the experimental validations have been hindered by cost, resources, and cumbersome technical expertise required for metabolomic investigations. In this study, we performed a meta-analysis of CRC microbiota data from diverse geographical regions using multiple methods to achieve reproducible results. We used a computational approach to predict the metabolomic profiles using existing CRC metagenomic datasets. We identified a reliable set of CRC-specific biomarkers from this analysis, including microbial and metabolite markers. In addition, we revealed significant microbe-metabolite associations through correlation analysis and microbial gene families associated with dysregulated metabolic pathways in CRC, which are essential in understanding the vastly sporadic nature of CRC development and progression.

摘要

结直肠癌(CRC)是全球癌症死亡的第二大主要原因。肠道失调的微生物群及其代谢产物分泌在 CRC 的发展和进展中起着重要作用。在这项研究中,我们通过对来自不同地理区域的宏基因组数据集的荟萃分析,确定了适用于 CRC 的微生物和代谢生物标志物。我们使用 LEfSe、随机森林(RF)和共生网络方法来识别微生物生物标志物。使用 AUC 评分和随机效应大小评估特定于地理数据集的标记物。共生网络分析表明,CRC 网络中整体微生物相关性降低,口腔病原微生物簇存在。从 CRC 数据集分析预测代谢物表明,CRC 中氨基酸、尸胺和肌酸丰富,与 CRC 相关的微生物(Streptococcus stomatis、Gemella morbillorum、Bacteroides fragilis、 spp.、Fusobacterium nucleatum、Solobacterium moorei 和 Clostridium symbiosum)呈正相关,与对照相关的微生物呈负相关。相反,丁酸、烟酰胺、胆碱、色氨酸和 2-羟基丁酸与对照相关的微生物呈正相关(<0.05)。总的来说,我们的研究确定了一组可在全球范围内复制的 CRC 生物标志物。我们还报告了与 CRC 相关的显著差异代谢物和微生物-代谢物相互作用。这项研究为进一步研究提供了重要的见解,有助于开发非侵入性 CRC 诊断工具和治疗干预措施。 多项研究表明肠道微生物失调与 CRC 之间存在关联。然而,由于受基因组、饮食和环境刺激以及各种分析方法相关的可重复性问题影响的特定队列关联,结果并不具有结论性。新出现的证据表明微生物代谢物在调节 CRC 中的宿主炎症和 DNA 损伤方面发挥作用。然而,由于代谢组学研究所需的成本、资源和繁琐的技术专业知识,实验验证受到了阻碍。在这项研究中,我们使用多种方法对来自不同地理区域的 CRC 微生物组数据进行荟萃分析,以实现可重复的结果。我们使用计算方法基于现有的 CRC 宏基因组数据集预测代谢组学图谱。我们从这项分析中确定了一组可靠的 CRC 特异性生物标志物,包括微生物和代谢物标志物。此外,我们通过相关性分析和与 CRC 中失调代谢途径相关的微生物基因家族揭示了显著的微生物-代谢物关联,这对于理解 CRC 发展和进展的广泛散发性本质至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7063/9431300/cfaeca520cda/spectrum.00013-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验