Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
Department of Materials Science and Engineering, Hanbat National University (HBNU), 125 Dongseodae-ro, Daejeon, 34158, Republic of Korea.
Nat Commun. 2022 Jun 29;13(1):3741. doi: 10.1038/s41467-022-31363-8.
Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (BiTe) directly converts low-temperature waste heat into chemical energy in the form of HO near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis-β-methylstyrene), achieving a maximum total turnover number of rAaeUPO (TTN) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.
热能是一种基本的原料,全球超过 80%的能源来自基于化石燃料的加热过程。然而,由于缺乏利用低质量废热(<100°C)的适当技术,大部分热能都被浪费了。在这里,我们报告了用于热能驱动、酶催化氧化官能化反应的热电生物催化化学转化系统。热电碲化铋(BiTe)直接将低温废热转化为 HO 的化学能,室温附近。简化的反应方案(例如,水、热、酶和热电材料)促进了代表性底物(例如,乙苯、丙苯、四氢萘、环己烷、顺式-β-甲基苯乙烯)的对映选择性和化学选择性羟化和环氧化,实现了 rAaeUPO(TTN)的最大总周转数超过 32000。通过直接将汽车尾气中的热量转化为具有 231.4 μM·h 速率的手性纯酶产物,在城市驾驶中设想了热电生物催化的实际可行性。