Zheng Xin Sally, Yang Qianru, Vazquez Alberto, Cui Xinyan Tracy
Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
Center for Neural Basis of Cognition, 115 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
iScience. 2022 Jun 6;25(7):104539. doi: 10.1016/j.isci.2022.104539. eCollection 2022 Jul 15.
Chronic microstimulation is faced with challenges that require an additional understanding of stability and safety. We implanted silicon arrays coated with poly(3,4-ethylenedioxythiophene) (PEDOT)/Carbon Nanotubes (CNT), or PCand IrOx into the cortex of GCaMP6s mice and electrically stimulated them for up to 12 weeks. We quantified neuronal responses to stimulation using two-photon imaging and mesoscale fluorescence microscopy and characterized electrode performance over time. We observed dynamic changes in stimulation stability over time and a significant advantage in energy efficiency using PC coated electrodes over IrOx coated electrodes. In a subset of mice, we observed abnormal ictal cortical responses or cortical spreading depression using stimulation parameters commonly used in intracortical stimulation applications, suggesting the need to investigate the potential neuronal damage and redefine the stimulation safety limit. This study not only revealed the dynamic changes in stimulation efficiency after implantation but also reiterates the potential for PC as a high-efficiency material in chronic neuromodulation.
慢性微刺激面临着一些挑战,这需要对稳定性和安全性有更多的了解。我们将涂有聚(3,4-乙撑二氧噻吩)(PEDOT)/碳纳米管(CNT)即PC和氧化铱(IrOx)的硅阵列植入表达GCaMP6s的小鼠皮层,并对其进行长达12周的电刺激。我们使用双光子成像和中尺度荧光显微镜对神经元对刺激的反应进行了量化,并随时间对电极性能进行了表征。我们观察到刺激稳定性随时间的动态变化,并且使用PC涂层电极在能量效率方面比IrOx涂层电极具有显著优势。在一部分小鼠中,我们使用皮层内刺激应用中常用的刺激参数观察到了异常的发作性皮层反应或皮层扩散性抑制,这表明需要研究潜在的神经元损伤并重新定义刺激安全极限。这项研究不仅揭示了植入后刺激效率的动态变化,还重申了PC作为慢性神经调节中高效材料的潜力。