Kozai Takashi D Y, Catt Kasey, Du Zhanhong, Na Kyounghwan, Srivannavit Onnop, Haque Razi-Ul M, Seymour John, Wise Kensall D, Yoon Euisik, Cui Xinyan Tracy
IEEE Trans Biomed Eng. 2016 Jan;63(1):111-9. doi: 10.1109/TBME.2015.2445713. Epub 2015 Jun 15.
Subcellular-sized chronically implanted recording electrodes have demonstrated significant improvement in single unit (SU) yield over larger recording probes. Additional work expands on this initial success by combining the subcellular fiber-like lattice structures with the design space versatility of silicon microfabrication to further improve the signal-to-noise ratio, density of electrodes, and stability of recorded units over months to years. However, ultrasmall microelectrodes present very high impedance, which must be lowered for SU recordings. While poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) coating have demonstrated great success in acute to early-chronic studies for lowering the electrode impedance, concern exists over long-term stability. Here, we demonstrate a new blend of PEDOT doped with carboxyl functionalized multiwalled carbon nanotubes (CNTs), which shows dramatic improvement over the traditional PEDOT/PSS formula.
Lattice style subcellular electrode arrays were fabricated using previously established method. PEDOT was polymerized with carboxylic acid functionalized carbon nanotubes onto high-impedance (8.0 ± 0.1 MΩ: M ± S.E.) 250-μm(2) gold recording sites.
PEDOT/CNT-coated subcellular electrodes demonstrated significant improvement in chronic spike recording stability over four months compared to PEDOT/PSS recording sites.
These results demonstrate great promise for subcellular-sized recording and stimulation electrodes and long-term stability.
This project uses leading-edge biomaterials to develop chronic neural probes that are small (subcellular) with excellent electrical properties for stable long-term recordings. High-density ultrasmall electrodes combined with advanced electrode surface modification are likely to make significant contributions to the development of long-term (permanent), high quality, and selective neural interfaces.
与较大的记录探针相比,亚细胞尺寸的长期植入式记录电极已显示出在单单元(SU)产量方面有显著提高。后续工作在此初步成功的基础上进一步拓展,将亚细胞纤维状晶格结构与硅微加工的设计空间多功能性相结合,以在数月至数年的时间内进一步提高信噪比、电极密度和记录单元的稳定性。然而,超小微电极呈现出非常高的阻抗,对于SU记录而言必须降低该阻抗。虽然掺杂有聚苯乙烯磺酸盐(PSS)涂层的聚(3,4 - 乙撑二氧噻吩)(PEDOT)在急性至早期慢性研究中已成功降低电极阻抗,但人们对其长期稳定性存在担忧。在此,我们展示了一种掺杂有羧基功能化多壁碳纳米管(CNT)的新型PEDOT混合物,它相较于传统的PEDOT/PSS配方有显著改进。
采用先前建立的方法制造晶格样式的亚细胞电极阵列。将PEDOT与羧酸功能化碳纳米管聚合到高阻抗(8.0 ± 0.1 MΩ:平均值 ± 标准误)的250 - μm²金记录位点上。
与PEDOT/PSS记录位点相比,PEDOT/CNT涂层的亚细胞电极在四个月的慢性尖峰记录稳定性方面有显著提高。
这些结果表明亚细胞尺寸的记录和刺激电极以及长期稳定性具有巨大潜力。
本项目使用前沿生物材料开发慢性神经探针,该探针体积小(亚细胞)且具有优异的电学特性,可进行稳定的长期记录。高密度超小微电极与先进的电极表面修饰相结合,可能会对长期(永久性)、高质量和选择性神经接口的发展做出重大贡献。