Zhang Wei, Tang Xianlun, Wang Mengzhou
School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China.
School of General Education, Chongqing College of Traditional Chinese Medicine, Chongqing, China.
Front Hum Neurosci. 2024 Nov 15;18:1442398. doi: 10.3389/fnhum.2024.1442398. eCollection 2024.
Applying convolutional neural networks to a large number of EEG signal samples is computationally expensive because the computational complexity is linearly proportional to the number of dimensions of the EEG signal. We propose a new Gated Recurrent Unit (GRU) network model based on reinforcement learning, which considers the implementation of attention mechanisms in Electroencephalogram (EEG) signal processing scenarios as a reinforcement learning problem.
The model can adaptively select target regions or position sequences from inputs and effectively extract information from EEG signals of different resolutions at multiple scales. Just as convolutional neural networks benefit from translation invariance, our proposed network also has a certain degree of translation invariance, making its computational complexity independent of the EEG signal dimension, thus maintaining a lower learning cost. Although the introduction of reinforcement learning makes the model non differentiable, we use policy gradient methods to achieve end-to-end learning of the model.
We evaluated our proposed model on publicly available EEG dataset (BCI Competition IV-2a). The proposed model outperforms the current state-of-the-art techniques in the BCI Competition IV- 2a dataset with an accuracy of 86.78 and 71.54% for the subject-dependent and subject-independent modes, respectively.
In the field of EEG signal processing, attention models that combine reinforcement learning principles can focus on key features, automatically filter out noise and redundant data, and improve the accuracy of signal decoding.
将卷积神经网络应用于大量脑电图(EEG)信号样本在计算上成本高昂,因为计算复杂度与EEG信号的维度数量呈线性比例关系。我们提出了一种基于强化学习的新型门控循环单元(GRU)网络模型,该模型将脑电图(EEG)信号处理场景中注意力机制的实现视为一个强化学习问题。
该模型可以从输入中自适应地选择目标区域或位置序列,并在多个尺度上有效地从不同分辨率的EEG信号中提取信息。正如卷积神经网络受益于平移不变性一样,我们提出的网络也具有一定程度的平移不变性,使其计算复杂度与EEG信号维度无关,从而保持较低的学习成本。尽管强化学习的引入使模型不可微,但我们使用策略梯度方法来实现模型的端到端学习。
我们在公开可用的EEG数据集(BCI竞赛IV-2a)上评估了我们提出的模型。在BCI竞赛IV-2a数据集中,所提出的模型在依赖受试者和独立于受试者的模式下分别以86.78%和71.54%的准确率优于当前最先进的技术。
在EEG信号处理领域,结合强化学习原理的注意力模型可以聚焦于关键特征,自动滤除噪声和冗余数据,并提高信号解码的准确性。