Suppr超能文献

使用平移成像框架,通过自适应光学成像方式对视网膜细胞进行可视化。

Visualizing retinal cells with adaptive optics imaging modalities using a translational imaging framework.

作者信息

Giannini John P, Lu Rongwen, Bower Andrew J, Fariss Robert, Tam Johnny

机构信息

National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Biomed Opt Express. 2022 Apr 25;13(5):3042-3055. doi: 10.1364/BOE.454560. eCollection 2022 May 1.

Abstract

Adaptive optics reflectance-based retinal imaging has proved a valuable tool for the noninvasive visualization of cells in the living human retina. Many subcellular features that remain at or below the resolution limit of current techniques may be more easily visualized with the same modalities in an setting. While most microscopy techniques provide significantly higher resolution, enabling the visualization of fine cellular detail in retinal samples, they do not replicate the reflectance-based imaging modalities of retinal imaging. Here, we introduce a strategy for imaging samples using the same imaging modalities as those used for retinal imaging, but with increased resolution. We also demonstrate the ability of this approach to perform protein-specific fluorescence imaging and reflectance imaging simultaneously, enabling the visualization of nearly transparent layers of the retina and the classification of cone photoreceptor types.

摘要

基于自适应光学反射的视网膜成像已被证明是一种用于在活体人类视网膜中对细胞进行无创可视化的有价值工具。许多处于或低于当前技术分辨率极限的亚细胞特征,在相同模式下的自适应光学环境中可能更容易被可视化。虽然大多数显微镜技术提供了显著更高的分辨率,能够在离体视网膜样本中可视化精细的细胞细节,但它们无法复制活体视网膜成像的基于反射的成像模式。在此,我们介绍一种使用与活体视网膜成像相同的成像模式对离体样本进行成像的策略,但分辨率有所提高。我们还展示了这种方法同时进行蛋白质特异性荧光成像和反射成像的能力,能够可视化视网膜几乎透明的层以及对视锥光感受器类型进行分类。

相似文献

1
Visualizing retinal cells with adaptive optics imaging modalities using a translational imaging framework.
Biomed Opt Express. 2022 Apr 25;13(5):3042-3055. doi: 10.1364/BOE.454560. eCollection 2022 May 1.
2
Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics.
Biomed Opt Express. 2017 Sep 7;8(10):4348-4360. doi: 10.1364/BOE.8.004348. eCollection 2017 Oct 1.
3
Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.
Biomed Opt Express. 2015 May 21;6(6):2191-210. doi: 10.1364/BOE.6.002191. eCollection 2015 Jun 1.
4
High-resolution adaptive optics retinal imaging of cellular structure in choroideremia.
Invest Ophthalmol Vis Sci. 2014 Sep 4;55(10):6381-97. doi: 10.1167/iovs.13-13454.
5
High-resolution retinal imaging of cone-rod dystrophy.
Ophthalmology. 2006 Jun;113(6):1019.e1. doi: 10.1016/j.ophtha.2006.01.056. Epub 2006 May 2.
6
3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT533-43. doi: 10.1167/iovs.16-19106.
7
Cellular-scale evaluation of induced photoreceptor degeneration in the living primate eye.
Biomed Opt Express. 2018 Dec 5;10(1):66-82. doi: 10.1364/BOE.10.000066. eCollection 2019 Jan 1.
8
Adaptive Optics Imaging of Inherited Retinal Disease.
Cold Spring Harb Perspect Med. 2023 Jul 5;13(7):a041285. doi: 10.1101/cshperspect.a041285.
10
Meaning of visualizing retinal cone mosaic on adaptive optics images.
Am J Ophthalmol. 2015 Jan;159(1):118-23.e1. doi: 10.1016/j.ajo.2014.09.043. Epub 2014 Oct 2.

引用本文的文献

1
Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for mouse retina imaging.
Biomed Opt Express. 2022 Dec 19;14(1):299-314. doi: 10.1364/BOE.473447. eCollection 2023 Jan 1.
2
Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina.
Small. 2023 Mar;19(11):e2203357. doi: 10.1002/smll.202203357. Epub 2023 Jan 15.

本文引用的文献

3
Imaging the Retinal Vasculature.
Annu Rev Vis Sci. 2021 Sep 15;7:129-153. doi: 10.1146/annurev-vision-093019-113719. Epub 2021 Jun 25.
5
Integrating adaptive optics-SLO and OCT for multimodal visualization of the human retinal pigment epithelial mosaic.
Biomed Opt Express. 2021 Feb 17;12(3):1449-1466. doi: 10.1364/BOE.413438. eCollection 2021 Mar 1.
6
Comparison of confocal and non-confocal split-detection cone photoreceptor imaging.
Biomed Opt Express. 2021 Jan 8;12(2):737-755. doi: 10.1364/BOE.403907. eCollection 2021 Feb 1.
8
Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO).
Prog Retin Eye Res. 2021 Jul;83:100920. doi: 10.1016/j.preteyeres.2020.100920. Epub 2020 Nov 6.
9
Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo.
Light Sci Appl. 2020 May 6;9:79. doi: 10.1038/s41377-020-0317-9. eCollection 2020.
10
Noninvasive Imaging and Correlative Histology of Cone Photoreceptor Structure in the Pig Retina.
Transl Vis Sci Technol. 2019 Dec 18;8(6):38. doi: 10.1167/tvst.8.6.38. eCollection 2019 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验